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Maxima in hypercubes and combinatoric tools

Let Q {q1,..-,qn} be a set of independent and uniformly distributed randontovecin [0,1]"’.
= (iys - - -+ 4i,) dominated byy; = (gj,,- .., qj,) ifand only if ¢;, < gj,, foranyk € {1,...,d}.
q, is called anaximumof Q if non-dominated. The number of maxima@fis denoted by, 4.

Our goal : getting théull asymptotic expansioof Var (K, 4) via polylogarithmandmultiple harmonic sum
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and via the asymptotic expansion of their noncommutativeeging series,
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Here we use the correspondence betw@an. . . , sy) andw = ys, ... ys, overY = {y;,7 > 0}, and then
v =af ey . af e overX = {wg,1}. Forw € Y*\ y1Y*, ie. forv € zoX*ay, the limits
lim 1 Liw(2) andlimpy_, ;o Hqy(IV) exist and are equal to thewnvergent polyéta
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Recall that the noncommutative generating series &V@f regularized polyétas can be expressed as [4, 5]

18r) = C(Ys, « - ay), for s; > 1.
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whereLyn X denotes the set of Lyndon words ov&r, {S;}iecynx (resp. {S,}ZEL,J"X) denotes a tran-
scendental basis (resp. the Lyndon basis) obthfle algebra(resp.free Lie algebrd overC on X .

Previous results : formulas from [1, 2, 3]
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where the sungx) is taken over indices verifying
1<ip...<ip 1 SL1I<i<...<ig <l and I+1<j1<...<jg1<n

Bai et al. proved that [1]

Var(Kpa) ~ (g5 + ) W,

K4 being a real constathe natureof which will be precised in the next section.
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where the notatiom\.,(n; 1) stands for the same object than, (n), but with indices bounded by+ 1. For
anyw € Y*, Ay, is a linear combination of multiple harmonic sums. For exemp
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Ayoyiyr = Hypyiyy + Hyoy, + Hygy, + Hy, <= Az =Ha10 +Hap + Hy g + Hy.

Forw € Y* \ y1Y*, the limit {(w) =
polyzétas.

lim 4 oo Aw(IV) also exists and is a linear combination of

Resultsa I'’Abel and Gene

ralized Euler's~ constants

The quasi-shuffleproduct of u = y;u’ andv = ij’ is the polynomial inY * defined recursively by|
cwu=uwe=uanduwv=y;(u = v) +yju=v) + yipj(u o).

Definition : Let ¢ : (C{Y), = ) — (C,.) the algebra morphism verifying faw € Y™* \ 3y Y*,
¢ (w) = ¢(w) and such thag . (y1) = 7.

Theorem :Let 7y stand for the projector frorfi(X') overC(Y') erasing monomials ending by. Then
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Therefore,
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So we get, looking at the constant part in this and mtrodydrre Bell polynomialsb,, . (t1, - - -
{t;}i>1 with the specialization; = (— 1) (i — 1)I¢ . (),

be the noncommutative generating series of the consf@nts(w) },,cy+}. Then
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Identifying coefficients oyfw leads to :

Corollary : For anyk > 0 and for anyw € xoX*z1,i.e.w = zgu andryw € Y* \ y1Y*, we have

& €T k 1\4—1”
¢ () = ZM[ZM%—c(z),zc(sx...)}

i=0

wherew denotes the well knowshuffle over X *.

In particular, we have

¢ (ab) k.wa, ¢(2),2¢(3), ..
Example :
€ (1,1,2) = 3¢(2,1,1) — 2¢(2, 1)»,+<( )(,W)Jﬂz),
=L=48 _ 2= 3¢@n +2B)
< (1,1)—f, ¢ (1,1,1),$_
Proposition : ; 22 ol
0= = el (2@ =2=lwk))
4= @- > D (d—z—\mh >£(y2 ),

we{y1,y2}ta-s
where|w|; stands for the number of occurences of the legiem the wordw and {y1,y2}, for the set of
words built over letter{y;, y2}, and of weightp (theweightof ys, . .. ys, beingy"7_; s;).

Example :
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Z ¢(2,1,1,1) — g) (¢(2,1,2) +¢(2,2,1))
=170(¢(2,1,1,1) +¢(3,1,1) +¢(4,1))
+ 50 (¢(2,1,2) +¢(2,2,1)) + 30 (¢(2,3) + ¢(3,2) +¢(5)) -

Finally, we get

Theorem : Let Z be theQ-algebra generated bf¢ (w),w € Y* \ y1Y*} and let2’ be theQ[~]-algebra
generated by2. There exist algorithmically computabte;, 3; . € 2’ such that, for anyl and anyM,
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Computations

The following results can be reached thanks to a final stemrwa reducing mtorreduublepolyzétas [6].
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o —mu 2)+—c( )c(5)+mc(z)c(3)2+mc(2>‘, m..fhuu”c(:)c@ﬂmmuc( )¢ (3 )+mc(2)c( )+ 1354560 ¢ © )+umc(3)‘,
Var(Kns) = (E + N.«) lnz(n) + (—=10¢(3) + 2¢(2)y + ) In(n) + %—y‘ —10¢(3)y + EC(Z)E + ((2)7‘ + %4(2) +o(1)
Var(icy) = (gr+m) )+ (2@ 40 @) 7+ 37 )+ (37¢(9) - L@ + 1€ 2ICE) +0C 07+ F @+ 307 (3¢ 0) = B @~ Tl + 1ot L e )y
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Var(os) = (s ) nt )+ (57— 560 + 5@ = T c@c@) 1t )+ (T2 + 5 0 + 50 ¢ 2P+ 177+ 1C(2) — 137 = 98¢ (5)7) ()

+ (%uﬁc(z)?wu—wnfssn<(7>—mc(z)c(sw+47<(s>*w+3<<s>fﬂc(s)c(z)* (@)~ 98 (5) 77~ 222C ()¢ 5) ) In ()
- R @@+ G @ = B @ Y= S T @+ E )¢ ) + T C @~ 22C )€ (9) 7+ 507" = 950C (N7 +50C (6:2) + [C () + 5 )
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