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Maxima in hypercubes and combinatoric tools

Let Q = {q1, . . . , qn} be a set of independent and uniformly distributed random vectors in [0, 1]d.

qi = (qi1, . . . , qid
) dominated byqj = (qj1

, . . . , qjd
) if and only if qik

< qjk
, for anyk ∈ {1, . . . , d}.

qi is called amaximumof Q if non-dominated. The number of maxima ofQ is denoted byKn,d.

Our goal : getting thefull asymptotic expansionof Var(Kn,d) via polylogarithmandmultiple harmonic sum,
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and via the asymptotic expansion of their noncommutative generating series,

Λ(z) =
∑

w∈Y ∗

Liw(z) w and H(N) =
∑

w∈Y ∗

Hw(N) w.

Here we use the correspondence between(s1, . . . , sr) andw = ys1 . . . ysr
overY = {yi, i > 0}, and then

v = x
s1−1
0 x1 . . . x

sr−1
0 x1 overX = {x0, x1}. For w ∈ Y ∗ \ y1Y

∗, i.e. for v ∈ x0X
∗x1, the limits

limz→1 Liw(z) andlimN→+∞ Hw(N) exist and are equal to theconvergent polyẑeta

ζ(s1, . . . , sr) = ζ(ys1 . . . ysr
) = ζ(xs1−1

0 x1 . . . x
sr−1
0 x1), for s1 > 1.

Recall that the noncommutative generating series overX of regularized polyẑetas can be expressed as [4, 5]

Z =

ց
∏

l∈LynX\{x0,x1}

eζ(Sl) Šl,

whereLynX denotes the set of Lyndon words overX, {Sl}l∈LynX (resp. {Šl}l∈LynX) denotes a tran-
scendental basis (resp. the Lyndon basis) of theshuffle algebra(resp.free Lie algebra) overC onX.

Previous results : formulas from [1, 2, 3]
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where the sum(∗) is taken over indices verifying

1 ≤ i1 . . . ≤ it−1 ≤ l, 1 ≤ it ≤ . . . ≤ id−2 ≤ l and l + 1 ≤ j1 ≤ . . . ≤ jd−1 ≤ n.

Bai et al. proved that [1]
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)
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κd being a real constantthe natureof which will be precised in the next section.
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we get E(K2
n,d) = A

yd−1
1

(n) +
∑
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where the notationAw(n; l) stands for the same object thanAw(n), but with indices bounded byl + 1. For
anyw ∈ Y ∗, Aw is a linear combination of multiple harmonic sums. For example,

Ay2y1y1 = Hy2y1y1 + Hy2y2 + Hy3y1 + Hy4 ⇐⇒ A2,1,1 = H2,1,1 + H2,2 + H3,1 + H4.

For w ∈ Y ∗ \ y1Y
∗, the limit ζ(w) = limN→+∞ Aw(N) also exists and is a linear combination of

polyzêtas.

Resultsà l’Abel and Generalized Euler’sγ constants

The quasi-shuffleproduct of u = yiu
′ andv = yjv

′ is the polynomial inY ∗ defined recursively by
ǫ u = u ǫ = u andu v = yi(u

′ v) + yj(u v′) + yi+j(u
′ v′).

Definition : Let ζ : (C〈Y 〉, ) → (C, .) the algebra morphism verifying forw ∈ Y ∗ \ y1Y
∗,

ζ (w) = ζ(w) and such thatζ (y1) = γ.

Theorem :Let πY stand for the projector fromC〈X〉 overC〈Y 〉 erasing monomials ending byx0. Then
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So we get, looking at the constant part in this and introducing the Bell polynomialsbn,k(t1, . . . , tn−k+1) in
{ti}i≥1 with the specializationti = (−1)i+1(i − 1)!ζ (yi),

Corollary : Let Z be the noncommutative generating series of the constants{ζ (w)}w∈Y ∗}. Then
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w∈Y ∗

ζ (w) w =

[

1 +
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)
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]

πY Z.

Identifying coefficients ofyk
1w leads to :

Corollary : For anyk ≥ 0 and for anyw ∈ x0X
∗x1, i.e. w = x0u andπY w ∈ Y ∗ \ y1Y

∗, we have

ζ (xk
1w) =

k
∑

i=0

ζ(x0[(−x1)
k−i

⊔⊔ u])

i!

[ i
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,

where⊔⊔ denotes the well knownshuffleoverX∗.

In particular, we have

ζ (xk
1) =

1

k!

k
∑

j=1

bk,j(γ, −ζ(2), 2ζ(3), . . .).

Example :

ζ (1, 1, 2) = 3ζ(2, 1, 1) − 2ζ(2, 1)γ +
ζ(2)

2

(

−ζ(2) + γ2
)

,

ζ (1, 1) =
γ2 − ζ(2)

2
, ζ (1, 1, 1) =

γ3 − 3ζ(2)γ + 2ζ(3)

6
.

Proposition :

κd =
1

(d − 1)!

∑

w∈{y1,y2}d−3

(−1)|w|2

(

2(d − 2 − |w|2)

d − 2 − |w|2

)

ζ(y2w),

where|w|i stands for the number of occurences of the letteryi in the wordw and{y1, y2}ρ for the set of
words built over letters{y1, y2}, and of weightρ (theweightof ys1 . . . ysr

being
∑r

i=1 si).

Example :

5!κ6 =

(

8

4

)

ζ(2, 1, 1, 1) −

(

6

3

)

(

ζ(2, 1, 2) + ζ(2, 2, 1)
)

= 70 (ζ(2, 1, 1, 1) + ζ(3, 1, 1) + ζ(4, 1))

+ 50 (ζ(2, 1, 2) + ζ(2, 2, 1)) + 30 (ζ(2, 3) + ζ(3, 2) + ζ(5)) .

Finally, we get

Theorem : Let Z be theQ-algebra generated by{ζ(w), w ∈ Y ∗ \ y1Y
∗} and letZ′ be theQ[γ]-algebra

generated byZ. There exist algorithmically computableαi, βj,k ∈ Z′ such that, for anyd and anyM,

Var(Kn,d) =

d−1
∑

i=0

αi lni(n) +
M
∑

j=1

1

nj

2d−2
∑

k=0

βj,k lnk(n) + o

(

1

nM

)

.

Computations

The following results can be reached thanks to a final step, which is reducing intoirreduciblepolyzêtas [6].

κ2 = 0, κ3 = ζ (2) , κ4 = 2 ζ (3) , κ5 =
33

40
ζ(2)2, κ6 =

5

4
ζ (5) +

1

6
ζ (2) ζ (3) , κ7 =

1451

7560
ζ(2)3 +

7

72
ζ(3)2, κ8 =

1729

5760
ζ (7) +

181

3600
ζ (3) ζ(2)2 +

13

360
ζ (2) ζ (5) ,

κ9 = −
17

1920
ζ (6, 2) +

11

160
ζ (3) ζ (5) +

1

320
ζ (2) ζ(3)2 +

1891

89600
ζ(2)4, κ10 =

529

75600
ζ(2)2ζ (5) +

33941

6350400
ζ(2)3ζ (3) +

17

3360
ζ (2) ζ (7) +

199271

4354560
ζ (9) +

11

12960
ζ(3)3,

Var(Kn,3) =

(

1

2
+ κ3

)

ln2(n) + (−10ζ(3) + 2ζ(2)γ + γ) ln(n) +
1

2
γ2 − 10ζ(3)γ +

83

10
ζ(2)2 + ζ(2)γ2 +

1

2
ζ(2) + o(1)

Var(Kn,4) =

(

1

3!
+ κ4

)

ln3 (n) +

(

−
53

5
ζ (2)2 + 6 ζ (3) γ +

1

2
γ

)

ln2 (n) +

(

97 ζ (5) −
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5
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γ + 16 ζ (2) ζ (3) + 6 ζ (3) γ2 +
1

2
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1

2
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ln (n) +
1
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ζ (3) −
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5
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γ2 −
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70
ζ (2)3 +

1

6
γ3 +

1

2
ζ (2) γ

+ 16 ζ (2) ζ (3) γ − 3 ζ (3)2 + 2 ζ (3) γ3 + 97 ζ (5) γ + o(1)

Var(Kn,5) =

(

1

4!
+ κ5

)

ln4 (n) +

(

1

6
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3
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13

3
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)

ln3 (n) +

(

10123
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ζ (2)3 +

47

2
ζ (3)2 +
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γ2 +
1

4
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1
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)

ln2 (n)

+

(

1

6
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1

2
ζ (2) γ − 950 ζ (7) − 13 ζ (2) ζ (3) γ2 + 47 ζ (3)2

γ +
1

3
ζ (3) −

317

5
ζ (3) ζ (2)2 +

10123

70
ζ (2)3

γ − 98 ζ (5) γ2 − 222 ζ (2) ζ (5)

)

ln (n)

−
13

3
ζ (2) ζ (3) γ3 +

47

2
ζ (3)2

γ2 −
317

5
ζ (3) ζ (2)2

γ −
98

3
ζ (5) γ3 +

33

40
ζ (2)2

γ4 +
32

3
ζ (3) ζ (5) +

10123

140
ζ (2)3

γ2 − 222 ζ (2) ζ (5) γ +
1

24
γ4 − 950 ζ (7) γ + 50 ζ (6, 2) +

1

4
ζ (2) γ2 +

1

3
ζ (3) γ

+
9

40
ζ (2)2 +

95

6
ζ (2) ζ (3)2 +

134739

350
ζ (2)4 + o(1).
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