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Introduction

Motivations

Nous allons dans ce mémoire étudier des fonctionnelles additives sur des arbres
aléatoires, distribués selon différents modèles de probabilités. Typiquement, ces fonc-
tionnelles peuvent être vues comme des coûts de complexité pour des algorithmes de
type “Diviser pour régner” - par exemple, la recherche d’un motif -. Nous allons ainsi
établir des résultats concernant le coût asymptotique de ce type d’algorithmes. Ce
travail est basé sur les travaux de thèse de Kapur [5], eux-mêmes largement inspi-
rés des techniques d’analyse de singularités, développées par Flajolet [3]. Il s’inscrit
dans la prolongation des recherches actuelles de l’équipe de bio-informatique de Lille
2, relatives à la modélisation de puces à ADN par des arbres pondérés [7]. Ces re-
cherches se concentrent actuellement sur la détermination d’une loi de probabilité
asscoiée à ces arbres. Cette loi connue, ce mémoire permettra d’étudier la complexité
des algorithmes liés à ce modèle.

Vocabulaire

Nous définissons dans un premier temps les notions sur lesquelles se fonde ce mé-
moire, à savoir arbres m-aires de recherche, fonctionnelles additives. Nous définirons
ensuite les modèles de probabilité sur lesquels nous allons travailler.

Un arbre m-aire est un arbre avec, au plus, m “descendants” pour chaque noeud.
En termes récursifs, un arbre m-aire est, soit vide, soit un noeud principal (appelé
racine) lié à un ensemble de m sous-arbres, chacun étant lui-même un arbre m-aire.

Un arbre m-aire de recherche est un arbre m-aire dans lequel chaque noeud
peut contenir m − 1 éléments d’un ensemble ordonné (ensemble des “clés”). Ainsi,
sans perte de généralité, on peut supposer l’ensemble des clés égal à {1, 2, . . . , n}.
L’arbrem-aire de recherche correspondant à une suite de n clés distinctes se construit
ainsi :

1. Si n < m , toutes les clés sont stockées dans la racine en ordre croissant.

2. Si n ≥ m, alors les m− 1 premières clés sont stockées dans la racine en ordre
croissant. Les n− (m− 1) restantes sont stockées dans les sous-arbres avec la
condition suivante : si σ1 < σ2 < . . . < σm−1 représente la suite ordonnée des
clés contenues dans la racine, alors les clés contenues dans le j-ième sous-arbre
sont toutes celles comprises entre σj et σj+1, avec la convention σ0 = 0 et
σm = n+ 1.

3. Tous les sous-arbres sont des arbres m-aires de recherche répondant aux deux
premières conditions.

Soit T un arbre m-aire de recherche, nous noterons |T | le nombre de clés stockées
dans T , et Lj(T ) le j-ième sous-arbre issu de la racine de T , pour 1 ≤ j ≤ m.

Soit x un noeud de T , nous noterons Tx le sous-arbre de T composé de x et de
ses descendants. Ces notations sont illustrées Figure 1.
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Fig. 1 – Exemple de notations pour l’arbre quaternaire T . Dans cet exemple, |T | =
15 and Tx = L1. De plus, l’arbre T est construit à partir de la suite
(7, 10, 12, 1, 4, 5, 2, 6, 3, 8, 11, 14, 15, 13, 9)

Nous pouvons maintenir définir une fonctionnelle additive :

Définition 1 Soit m ≥ 2 et f une fonctionnelle définie sur l’ensemble des arbres m-
aires de recherche, à valeurs réelles. Nous dirons que f est une fonctionnelle additive
si elle vérifie la récurrence

f(T ) =

m∑

i=1

f(Li(T )) + t|T | (1)

pour tout arbre T tel que |T | ≥ m − 1, et pour une suite de réels (tn)n≥0 fixée, que
nous appelerons “suite-test”.

Comme nous l’avons déjà précisé, f(T ) doit être vu comme la complexité d’un al-
gorithme récursif sur un arbre T , algorithme qui nécessite une complexité t|T | initiale
(comparaisons, opérations arithmétiques...etc) puis effectue m appels récursifs.

Il nous reste maintenant à préciser les modèles de probabilité sous lesquels nous
allons tirer nos arbres “au hasard”.

Modèles de probabilité

D’après la description des arbres de recherche effectuée précedemment, toute
permutation de {1, 2, . . . , n} engendre un arbre m-aire de recherche.

Nous parlerons de modèle uniforme sur l’ensemble des arbres m-aires de re-
cherche, dans le cas où chaque arbre, à n clés, a la même probabilité. Dans ce cas,
cette probabilité est simplement l’inverse du nombre d’arbres m-aires de recherche
à n clés. Dans le cas m = 2, ce nombre est le n-ième nombre de Catalan, et c’est
pourquoi nous parlerons plutôt du modèle de Catalan.

Si nous mettons maintenant une probabilité uniforme sur les n! permutations
de {1, 2, . . . , n}, alors les arbres ne sont plus distribués selon le modèle uniforme.
Par exemple, si m = 2 et n = 3, le nombre d’arbre binaires à trois clés est C3 =
5, mais les permutations (213) et (231) engendrent le même arbre, qui aura donc
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pour probabilité 2
3!

= 1
3
. Nous parlerons dans ce cas de modèle de permutation

aléatoire.

1 Analyse de singularités

1.1 Position du problème

Partons d’un exemple simple, que nous traiterons complètement dans la section
suivante. On considère le cas m = 2 et on note notre fonctionnelle f(T ) = Xn, pour
|T | = n > 0. On peut alors reformuler l’équation (1) ainsi :

Xn = XKn
+Xn−1−Kn

+ tn

où Kn désigne une variable aléatoire indépendante de Xn et représentant le nombre
de clés contenues dans le sous-arbre gauche. Dans le cas du modèle de permutation
aléatoire, on voit facilement que P(Kn = k) = 1

n
pour 0 ≤ k ≤ n − 1. En effet, si

on note σ une variable uniformément distribuée sur l’ensemble des permutations de
{1, 2, . . . , n}, on a

P(Kn = k) = P(σ(1) = k + 1) =
(n− 1)!

n!
=

1

n

Donc, en conditionnant par Kn, et en notant fn = E [Xn ], on obtient

fn = tn +
1

n

n−1∑

k=0

fk + fn−1−k

= tn +
2

n

n−1∑

k=0

fk

avec la condition initiale f0 = t0.

Le problème qui se pose alors est le suivant : la suite (tn) étant connue, comment
déterminer le comportement asymptotique de fn ?

Pour cela, on considére les fonctions génératrices f(z) =
∑

n≥0 fnz
n et

t(z) =
∑

n≥0 tnz
n. L’équation reliant fn à tn se transfère alors, via des manipulations

classiques, en une équation reliant f(z) à t(z) :

f(z) = t(z) + 2

∫ z

0

f(w)
dw

1 − w

équation qui se résout, par dérivation, et par méthode de variation de la constante,
en :

f(z) = (1 − z)−2

∫ z

0

t′(w)(1 − w)2dw

en supposant, sans perte de généralité, que f0 = t0 = 0.

Sous cette forme, on peut traiter un premier exemple directement.
Si tn =

(
n+α

α

)
, i.e. t(z) = (1 − z)−α−1, alors
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– Si α 6= 1

f(z) =
α+ 1

α− 1

[
(1 − z)−α−1 − (1 − z)−2

]

fn =
α+ 1

α− 1

[(
n+ α

α

)
− (n+ 1)

]

– Si α = 1, alors f(z) = 2
(1−z)2

log 1
1−z

et fn = 2(n+1)(Hn+1−1), avec Hn =

n∑

i=1

1

i

le n-ième nombre harmonique.

Or, d’après la formule de Stirling,

(
n+ α

α

)
∼ nα

Γ(α + 1)
.

On peut donc résumer ces résultats ainsi :

tn =

(
n+ α

α

)
, α > 1 =⇒ fn ∼ α + 1

α− 1

nα

Γ(α + 1)

tn = n + 1 =⇒ fn ∼ 2n log n

tn =

(
n+ α

α

)
, 0 < α < 1 =⇒ fn ∼ 1 + α

1 − α
n

Dans cet exemple, le choix de tn nous a conduit à une expression explicite de t(z)
et donc de f(z). Mais si tn =

√
n ou tn = lnn, nous n’aurons plus de formule expli-

cite, et nous devrons alors nous contenter d’équivalents asymptotiques, au voisinage
de 1, pour t(z).

L’exemple traité nous permet d’esquisser le raisonnement général, et sur lequel
nous allons mettre des bases théoriques dans les paragraphes suivants :

– Trouver une relation entre fn et tn
– En déduire une relation entre f(z) et t(z)
– Chercher un développement asymptotique pour f(z)
– Conclure sur le comportement asymptotique de fn.

1.2 Développement singulier

Lorsqu’une fonction f possède une unique singularité, il est toujours possible,
quitte à effectuer un changement de variable, de la ramener en z = 1. Partant de ce
constat, une famille de fonctions assez naturelle pour effectuer nos développements
asymptotiques est celle des fonctions {(1 − z)α, α ∈ R}.

Définition 2 Une fonction définie par une série entière ayant un rayon de conver-
gence égal à 1 est dite ∆-régulière si elle peut être prolongée analytiquement, à l’ex-
ception de z = 1, dans un domaine

∆(φ, η) = {z/ |z| < 1 + η, | arg (z − 1)| > φ}
avec η > 0 et 0 < φ < π/2. On dit qu’une fonction f admet un développement
∆-singulier en z=1 si elle est ∆-régulière et s’il existe A tel que

f(z) =
N∑

n=0

cn(1 − z)αn +O(|1 − z|A) (2)
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pour une suite de complexes (cn)0≤n≤N et une suite de réels (αn)0≤n≤N telle que
αn < A.

Le choix d’un tel domaine d’analyticité permet la mise en place de théorèmes
reliant le comportement de f(z) au voisinage de sa singularité z = 1 avec le compor-
tement asymptotique de ses coefficients de Taylor. Nous faisons appel à la notation
suivante : si f(z) =

∑
n≥0 fnz

n, on note fn = [zn]f(z).

Théorème 1 Si f(z) admet un développement ∆-singulier de la forme (2) valide
dans un domaine ∆, alors

[zk]f(z) =

N∑

n=0

cn

(
k − αn − 1

−αn − 1

)
+O

(
k−A−1

)

La seule partie à démontrer est en fait celle concernant le terme d’erreur :

Théorème 2 Soit f une fonction analytique dans un domaine ∆(φ1, η1), avec η1 > 0
et 0 < φ1 <

π
2
.

Si f(z) = O (|1 − z|α) pour un certain réel α, alors

fk = [zk]f(z) = O
(
k−α−1

)

Démonstration: La condition f(z) = O (|1 − z|α) se traduit par l’existence
d’une constante K vérifiant pour tout z 6= 1

|f(z)| < K|1 − z|α. (3)

D’après la formule de Cauchy, nous avons

fk =
1

2iπ

∫

O+

f(z)
dz

zk+1

où O+ désigne n’importe quel contour orienté positivement, entourant l’origine, et
à l’intérieur de ∆ : nous choisissons le contour suivant, orienté positivement : C =
γ1 ∪ γ2 ∪ γ3 ∪ γ4, avec :

γ1 = {z/ |z − 1| =
1

k
, |arg(z − 1)| ≥ φ}

γ2 = {z/ 1

k
≤ |z − 1|, |z| ≤ 1 + η, |arg(z − 1)| = φ}

γ3 = {z/ |z| = 1 + η, |arg(z − 1)| ≥ φ}
γ4 = {z/ 1

k
≤ |z − 1|, |z| ≤ 1 + η, |arg(z − 1)| = −φ}

où π
2
> φ > φ1 et 0 < η < η1, de sorte que le contour C soit effectivement intérieur à

∆. Nous allons maintenant évaluer les contributions des intégrales sur les différents
chemins, en posant

f
(i)
k =

1

2iπ

∫

γi

f(z)
dz

zk+1
.
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1. Petit cercle : d’après (3), on a, en utilisant des majorations immédiates, pour
k ≥ 4,

|f (1)
k | ≤ 1

2π
·K
(

1

k

)α

·
(

1 − 1

k

)−k−1

·
(

2π

k

)

≤ 5
(
Kk−α−1

)

2. Partie rectiligne : on remarque d’abord que, pour des raisons de symétrie, la
majoration obtenue pour |f (2)

k | sera également valable pour |f (4)
k |. On pose ω = eiφ,

et on effectue le changement de variable z = 1 + ωt
k

. On obtient alors

|f (2)
k | ≤ 1

2π

∫ kE

1

K

(
t

k

)α ∣∣∣∣1 +
ωt

k

∣∣∣∣
−k−1

dt

k

≤
(
Kk−α−1

)
· 1

2π

∫ ∞

1

tα
∣∣∣∣1 +

ωt

k

∣∣∣∣
−k−1

dt

Dans cette majoration, E est défini de telle sorte que γ2 et γ3 se rejoignent : préci-
sément E est la racine positive de l’équation |1 +Eeiφ| = 1 + η. Il reste maintenant
à majorer l’intégrale, uniformément en k. Or,

∣∣∣∣1 +
ωt

k

∣∣∣∣ ≥ 1 +Re

(
ωt

k

)
= 1 +

t

k
cosφ

Par conséquent,

|f (2)
k | ≤ Jk

2π
(Kk−α−1) avec Jk =

∫ ∞

1

tα
(

1 +
t cosφ

k

)−k

dt

A partir de là, on constate que

Jk −→
k→∞

∫ ∞

1

tαe−t cos φdt

et donc que la suite (Jk) est bornée par une constante ne dépendant que de α et φ.
En résumé

|f (2)
k | ≤ J(α, φ)

2π
(Kk−α−1) avec J(α, φ) = sup

k≥|α|+4

∫ ∞

1

tα
(

1 +
t cosφ

k

)−k

dt

3. Grand cercle : comme pour 1., en utilisant la majoration (3), on obtient :

|f (3)
k | ≤ 1

2π
·K(2 + η)α · (1 + η)−k−1 · (2π(1 + η))

≤ K
(2 + η)α

(1 + η)k

4. En réunissant toutes les majorations trouvées, on obtient, pour k ≥ |α| + 4,

|fk| ≤ (Kk−α−1)

[
5 +

J(α, φ)

π
+

(2 + η)α

(1 + η)k
kα+1

]
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Par ailleurs, il existe une constante k1 (dépendant uniquement de α et η), telle que,
pour k ≥ k1,

(2 + η)α

(1 + η)k
kα+1 ≤ 1

Ainsi, on obtient finalement, pour tout k ≥ k0, avec k0 = max(k1, |α| + 4),

|fk| ≤ (Kk−α−1)

[
5 +

J(α, φ)

π

]

ce qui est le résultat cherché.

1.3 Opérations sur les développements

L’exemple de l’arbre binaire de recherche, sous le modèle de permutation aléa-
toire, nous a conduit à l’équation f(z) = (1 − z)−2

∫ z

0
t′(w)(1 − w)2dw. Dans l’ob-

jectif de déterminer le comportement asymptotique de f(z) au voisinage de z = 1,
il convient donc de s’intéresser aux effets de la dérivation et de l’intégration sur des
éléments singuliers du type (1 − z)α.

Théorème 3 (Dérivation d’un développement singulier) Soit f une fonction
∆-régulière admettant un développement ∆-singulier, alors pour tout entier r > 0,
dr

dzr f(z) est également ∆-régulière et admet un développement calculable par dériva-
tion terme à terme :

dr

dzr
f(z) = (−1)r

N∑

n=0

cn
Γ(αn + 1)

Γ(αn + 1 − r)
(1 − z)αn−r +O

(
|1 − z|A−r

)

Démonstration: Là encore, la seule partie à démontrer est celle concernant le
terme d’erreur. De plus, par une récurrence immédiate, on peut se ramener au cas
r = 1. Soit donc g(z) = f(z)

(1−z)A où f(z) = O
(
|1 − z|A

)
. On a alors

g′(z) =
f ′(z)

(1 − z)A
+ A

f(z)

(1 − z)A+1

qu’on peut reformuler ainsi :

f ′(z) = g′(z)(1 − z)A − A
f(z)

1 − z

Par hypothèse, au voisinage de 1, on a g(z) = O (1). Il nous faut donc démontrer
que g′(z) = O (|1 − z|−1), au voisinage de 1, pour en déduire le théorème.
Soit ∆ = ∆(φ1, η1) le domaine de régularité de f . Nous allons travailler dans un
domaine ∆(φ + ε, η), avec ε > 0, φ > φ1 et η < η1. On fixe ε > 0 "petit" et on
restreint z au domaine ∆(φ + ε, η). A partir de la formule de Cauchy

g(z) =
1

2iπ

∫

γ

g(ω)
dω

ω − z

9



0 1
φ

1 + η

γ2

γ4

γ3

z

γ1

Fig. 2 – Le contour γ utilisé dans la démonstration du théorème de dérivation

on en déduit, par dérivation,

g′(z) =
1

2iπ

∫

γ

g(ω)
dω

(ω − z)2

De plus, on choisit comme contour γ celui dessiné Figure 2 : γ = γ1∪γ2∪γ3∪γ4,
avec

γ1 = {ω/|ω − 1| =
1

2
|z − 1|, |arg(ω − 1)| ≥ φ}

γ2 = {ω/1

2
|z − 1| ≤ |ω − 1|, |ω| ≤ 1 + η, arg(ω − 1) = φ}

γ3 = {ω/|ω| = 1 + η, |arg(ω − 1)| ≥ φ}
γ4 = {ω/1

2
|z − 1| ≤ |ω − 1|, |ω| ≤ 1 + η, arg(ω − 1) = −φ}

Le choix φ > φ1 et η < η1 nous garantit que le contour γ est bien inclus dans le
domaine d’analyticité de g. Nous allons maintenant évaluer les contributions des
intégrales le long des différents chemins γ1, γ2, γ3, γ4. Pour le petit cercle,

∣∣∣∣
∫

γ1

∣∣∣∣ = O (1) ·O
(

1

|1 − z|2
)
·O (|1 − z|) = O

(
|1 − z|−1

)

∣∣∣∣
∫

γ3

∣∣∣∣ = O (1) = O
(
|1 − z|−1

)

Si nous posons |1 − z| = δ, les intégrales le long de γ2 et γ4 sont majorées, via des
considérations géométriques par :

∣∣∣∣
∫

γ2

∣∣∣∣ ≤
∫ +∞

δ
2

du

δ2 + u2
= O

(
δ−1
)

= O
(
|1 − z|−1

)
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La combinaison des différentes majorations nous amène à g ′(z) = O (|1 − z|−1) , et
donc à la conclusion du théorème.

Théorème 4 (Intégration d’un développement singulier) Soit f une fonction
∆-régulière admettant un développement ∆-singulier, alors la fonction z 7→

∫ z

0
f(t)dt

est également ∆-régulière. Supposons que pour tout n, αn 6= −1 et que A 6= −1.
– Si A < −1, alors le développement singulier de

∫ z

0
f(t)dt est donné par :

∫ z

0

f(t)dt = −
N∑

n=0

cn
αn + 1

(1 − z)αn+1 +O
(
|1 − z|A+1

)

– Si A > −1, alors le développement singulier de
∫ z

0
f(t)dt est donné par :

∫ z

0

f(t)dt = −
N∑

n=0

cn
αn + 1

(1 − z)αn+1 + L0 +O
(
|1 − z|A+1

)

où la constante d’intégration L0 vaut :

L0 =
∑

αn<−1

cn
αn + 1

+

∫ 1

0

(f(t) −
∑

αn<−1

cn(1 − t)αn)dt

Démonstration: Soit r(z) le terme d’erreur dans le développement de f(z) :

r(z) = f(z) −
N∑

n=0

cn(1 − z)αn

Par hypothèse, il existe une constante K > 0 telle que pour tout z appartenant à
∆, on a : |r(z)| ≤ K|1 − z|A.
1. Si A < −1, il suffit de démontrer que

∫ z

0

r(t)dt = O
(
|1 − z|A+1

)
,

où l’intégrale peut être calculée sur n’importe quel chemin reliant 0 à z, à l’intérieur
du domaine d’analyticité de r. Nous choisissons le contour γ = γ1 ∪ γ2, dessinée
Figure 3 .

Alors
∣∣∣∣
∫

γ

r(t)dt

∣∣∣∣ ≤
∣∣∣∣
∫

γ1

r(t)dt

∣∣∣∣+
∣∣∣∣
∫

γ2

r(t)dt

∣∣∣∣

≤ K

∫

γ1

|1 − t|Ads+K

∫

γ2

|1 − t|Ads

= O
(
|1 − z|A+1

)

Le résultat en O
(
|1 − z|A+1

)
provient pour l’intégrale le long de γ1 d’un calcul

explicite ; pour l’intégrale le long de γ2, ce résultat résulte de la majoration par la
longueur du contour γ2, la valeur |1 − t| étant fixe.
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0 1

1 + η

φ

z

γ1

γ2

Fig. 3 – Le contour utilisé dans la démonstration du théorème d’intégration.

2. Si A > −1 : nous posons f−(z) la “partie divergente” de f donnant lieu à des
problèmes d’intégrabilité en 1 :

f−(z) =
∑

αj<−1

cj(1 − z)αj .

Nous effectuons alors la décomposition f = (f − f−) + f−. On a :

∫ z

0

f−(t)dt = −
∑

αj<−1

cj
αj + 1

(1 − z)αj+1 +
∑

αj<−1

cj
αj + 1

De plus, le choix de f−(z) nous garantit l’existence de
∫ 1

0
(f − f−)(t)dt, donc

∫ z

0

(f − f−)(t)dt =

∫ 1

0

(f − f−)(t)dt+

∫ z

1

(f − f−)(t)dt

Le premier terme est une constante, que nous retrouvons dans l’expression de L0.
Le deuxième terme se décompose ainsi :

∫ z

1

(f − f−)(t)dt = −
∑

αj>−1

cj
αj + 1

(1 − z)αj+1 +

∫ z

1

r(t)dt.

Comme A > −1 le terme d’erreur est fini, et une intégration le long du segment
reliant 1 à z fournit le résultat

∫ z

1
r(t)dt = O

(
|1 − z|A+1

)
.

1.4 Produit de Hadamard

Dans certains cas, comme celui du modèle de Catalan, que nous traiterons en
application, on peut être amené à considérer des fonctions génératrices à coefficients
pondéres. Par exemple, plutôt que de poser f(z) =

∑
n≥0 fnz

n, nous pouvons poser

f̃(z) =
∑

n≥0 Cnfnz
n, où les Cn sont les nombres de Catalan, des constantes connues.

f̃(z) se présente alors comme le produit de Hadamard des fonctions f et C définie par

12



C(z) =
∑

n≥0 Cnz
n. Plus généralement, si a(z) =

∑
n≥0 anz

n et b(z) =
∑

n≥0 bnz
n,

on définit le produit de Hadamard de a et b par :

a(z) � b(z) =
∑

n≥0

anbnz
n

Il convient donc de regarder comment se comporte l’analyse de singularités par
passage au produit de Hadamard.

Proposition 1 Si a, b et a+b ne sont pas des entiers, alors le produit de Hadamard
(1 − z)a � (1 − z)b admet un développement infini dans l’échelle des puissances
{0, 1, 2 . . .} ∪ {a+ b + 1, a+ b + 2, . . .} de (1 − z). Précisément, au voisinage de 1,

(1 − z)a � (1 − z)b ∼
∑

k≥0

λ
(a,b)
k

(1 − z)k

k!
+
∑

k≥0

µ
(a,b)
k

(1 − z)a+b+1+k

k!

avec les coefficients λ et µ donnés par

λ
(a,b)
k =

Γ(1 + a + b)

Γ(1 + a)Γ(1 + b)

(−a)k(−b)k

(−a− b)k

µ
(a,b)
k =

Γ(−a− b− 1)

Γ(−a)Γ(−b)
(1 + a)k(1 + b)k

(2 + a + b)k

avec la notation xk = x(x + 1) · · · (x + k − 1).

Démonstration: Ce résultat découle du développement :

(1 − z)a = 1 +
−a
1
z +

(−a)(−a + 1)

2!
z2 + . . .

Il vient alors, en effectuant une multiplication terme à terme :

(1 − z)a � (1 − z)b = 2F1[−a,−b; 1; z]

où 2F1 représente la fonction hypergéométrique de Gauss définie par

2F1[α, β; γ; z] = 1 +
αβ

γ

z

1!
+
α(α+ 1)β(β + 1)

γ(γ + 1)

z2

2!
+ · · ·

Mais alors, d’après la théorie des transformations de fonctions hypergéométriques
[4], nous savons, en général, que celles-ci peuvent être développées au voisinage de
z = 1 via la transformation z 7→ 1 − z. Dans le cas γ = 1, nous avons en effet

2F1[α, β; 1; z] =
Γ(1 − α− β)

Γ(1 − α)Γ(1 − β)
2F1[α, β;α+ β; 1 − z]

+
Γ(α+ β − 1)

Γ(α)Γ(β)
(1 − z)−α−β+1

2F1[1 − α, 1 − β; 2 − α− β; 1 − z].

Cette égalité nous fournit le développement donné dans la proposition, avec α = −a
et β = −b.
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Proposition 2 (Composition des termes d’erreurs) Soit f et g deux fonctions
∆-régulières dans un domaine ∆(φ, η) telles que, pour z ∈ ∆(φ, η), f(z) = O (|1 − z|a)
et g(z) = O

(
|1 − z|b

)
, avec a + b + 1 < 0. Alors le produit de Hadamard f � g est

régulier dans un domaine ∆′, où il vérifie

(f � g)(z) = O
(
|1 − z|a+b+1

)

Démonstration: Admise [2]

Nous pouvons préciser le développement de f � g dans le cas a+ b+ 1 > −1.

Proposition 3 Soit f et g deux fonctions ∆-régulières, telles que pour z ∈ ∆, f(z) =
O (|1 − z|a) et g(z) = O

(
|1 − z|b

)
. Supposons également que k < a + b + 1 < k + 1

pour un entier k ≥ −1. Alors pour z ∈ ∆′,

(f � g)(z) =
k∑

j=0

(−1)j

j!
(f � g)(j)(1)(1 − z)j +O

(
|1 − z|a+b+1

)

Démonstration: Soit ∂ = ∂z l’opérateur d
dz

et soit ϑ l’opérateur d’Euler z∂. On
remarque que

ϑ(f � g) = (ϑf) � g = f � (ϑg),

ce qui conduit à
ϑk+1(f � g) = (ϑk+1f) � g.

D’après le théorème de dérivation d’un développement singulier, on sait que ϑk+1f(z) =
O
(
|1 − z|a−k−1

)
. Donc, la proposition précédente s’applique :

(
ϑk+1(f � g)

)
(z) = O

(
|1 − z|a+b−k

)
.

Par ailleurs, pour une fonction h dans l’image de ϑ, on a

(
ϑ−1h

)
(z) = P0 +

∫ z

0

h(t)
dt

t

avec une certaine constante d’intégration P0. Il est alors possible de retrouver h =
f � g par intégrations successives, en utilisant le théorème d’intégration d’un déve-
loppement singulier.

Par définition de k, on a −1 < a+ b− k < 0. Des intégrations répétées montrent
alors

(f � g)(z) = P (z) +O
(
|1 − z|a+b+1

)
,

où P (z) est un polynôme de degré k englobant les constantes d’intégration. Ce
polynôme est donc entièrement déterminé par les (k + 1) premiers termes du déve-
loppement de Taylor de f � g en 1, ce qui revient précisément à l’énoncé de notre
théorème.

Nous résumons maintenant les différents résultats obtenus concernant le produit
de Hadamard.
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Théorème 5 (Composition de singularités) Soit f et g deux fonctions ∆-régulières
admettant les développements ∆-singuliers suviants :

f(z) =

M∑

m=0

cm(1 − z)αm +O(|1 − z|A), g(z) =

N∑

n=0

dn(1 − z)βn +O(|1 − z|B)

Alors le produit de Hadamard f � g est également ∆-régulier. De plus, il admet le
dévoppement singulier suivant :

f � g(z) =
∑

m,n

cmdn[(1 − z)αm � (1 − z)βn ] + P (1 − z) +O
(
|1 − z|C

)
,

avec C = 1 + min{α0 +B,A+ β0} et P un polynôme de degré inférieur à C.

1.5 Le modèle des arbres de Catalan

Nous allons traiter complètement le modèle des arbres de Catalan, c’est-à-dire le
modèle uniforme pour m = 2, pour voir la mise en application des principes évoqués
dans cette partie assez théorique.

Notre équation fondamentale (1) peut s’écrire ainsi :

Xn = XKn
+Xn−1−Kn

+ tn.

Or, dans le modèle de Catalan, P(Kn = k) =
CkCn−1−k

Cn
avec Cn = 1

n+1

(
2n
n

)
, le n-ième

nombre de Catalan représentant le nombre d’arbre binaires à n clés.
En effet, pour obtenir un arbre binaire à n clés (parmi les Cn possibles), avec un

sous-arbre gauche à k clés, il faut choisir un arbre binaire (le sous-arbre gauche) à k
clés (donc Ck choix possibles), et un arbre binaire (le sous-arbre droit) à n − 1 − k
clés (donc Cn−1−k choix possibles).

On obtient alors, en conditionnant par Kn :

fn = E [Xn ] = tn +
n−1∑

k=0

CkCn−1−k

Cn

(fk + fn−1−k)

d’où

Cnfn = Cntn +

n−1∑

k=0

CkCn−1−k(fk + fn−1−k)

= Cntn + 2

n−1∑

k=0

CkCn−1−kfk

On introduit alors des fonctions génératrices pondérées par des coefficients de nor-
malisation :

t̃(z) =
∑

n≥0

tnCnz
n f̃(z) =

∑

n≥0

fnCnz
n,

15



ce qui nous conduit à

f̃(z) = t̃(z) + 2zC(z)f̃(z), où C(z) =
∑

n≥0

Cnz
n =

1

2z
(1 −

√
1 − 4z).

Donc

f̃(z) =
1√

1 − 4z
t̃(z)

=
t(z) � C(z)√

1 − 4z
, où t(z) =

∑

n≥0

tnz
n

Nous pouvons maintenant établir le théorème suivant :

Théorème 6 Sous le modèle de Catalan, les valeurs moyennes des coûts induits par
des suites-test du type tn = nα(α > 0) admettent des développements asympotiques
en puissances de n et de lnn. Les termes principaux sont résumés dans le tableau
suivant :

Suite-test (tn) Coût (fn)

nα (3
2
< α)

Γ(α− 1
2
)

Γ(α)
nα+ 1

2 +O
(
nα− 1

2

)

n3/2 1

Γ(3/2)
n2 +O (n lnn)

nα (1
2
< α < 3

2
)

Γ(α− 1
2
)

Γ(α)
nα+ 1

2 +O (n)

n1/2 1√
π
n lnn +O (n)

nα (0 < α < 1
2
) Kαn +O (1)

Démonstration: Pour des raisons de simplicité, nous allons ramener la singu-
larité en z = 1. Ainsi :

t(z) � C(
z

4
) =

∞∑

n=1

nα

n+ 1

(
2n

n

)(z
4

)n

Par ailleurs, le développement asymptotique des nombres de Catalan est connu :

4−nCn ∼ 1√
π
n−3/2

(
1 − 9

8n
+ · · ·

)
.

En multipliant par nα, on trouve ainsi un équivalent asymptotique au n-ième co-
efficient de Taylor. De là, on cherche à en déduire un équivalent asymptotique, au
voisinage de 1, de t(z) � C( z

4
). Or

[zn](1 − z)−α+ 1

2 ∼ nα− 3

2

Γ(α− 1
2
)

(
1 +

(2α− 1)(2α− 3)

8n
+ · · ·

)
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Nous pouvons donc trouver une fonction H(z) dont les coefficients correspondent
asyptotiquement à ceux de t(z) � C( z

4
) :

H(z) =
Γ(α− 1

2
)√

π
(1 − z)−α+ 1

2

(
1 + c1(1 − z) + c2(1 − z)2 + · · ·

)
,

pour une suite (cn) calculable explicitement. Le développement singulier de t(z) �
C( z

4
) est alors la somme de H(z) et d’une série P (z) =

∑+∞
n=0 pn(1 − z)n.

Le développement singulier de f̃( z
4
) s’obtient finalement en divisant par

√
1 − z

et nous obtenons donc :

[zn]f̃
(z

4

)
∼ Γ(α− 1

2
)√

πΓ(α)
nα−1

(
1 +

c′1
n

+
c′2
n2

+ · · ·
)

+ [zn]
P (z)√
1 − z

Après avoir divisé par 4−nCn, on trouve enfin :

fn ∼ Γ(α− 1
2
)

Γ(α)
nα+ 1

2

(
1 +

c′′1
n

+ · · ·
)

+Rn,

avec un terme Rn provenant de la série P (z) de la forme

Rn ∼ d−1n+ d0 +
d1

n
+ · · ·

Cette dernière estimation nous permet de remplir le tableau donné dans le théorème,
sous réserve que α ne soit pas de la forme k

2
, avec k entier. De plus, si 0 < α < 1

2
,

la série définissant f̃( z
4
) converge en z = 1 ; le terme dominant pour f̃

(
z
4

)
est alors

t̃(1
4
)√

1 − z
, soit f̃

(z
4

)
∼ Kα√

1 − z
, avec Kα =

+∞∑

n=1

nα

n+ 1

1

4n

(
2n

n

)
.

Lorsque α est de la forme k
2
, avec k entier, des termes logarithmiques vont appa-

raître, du fait de la présence de puissances entières négatives de n dans les coefficients
de t̃( z

4
), mais le raisonnement reste le même. Par exemple, si α = 0.5, on a :

4−n
√
nCn ∼ 1√

π

1

n
+O

(
1

n2

)
,

et on a alors

H(z) =
1√
π

log

(
1

1 − z

)
,

or

[zn](1 − z)−1/2 log

(
1

1 − z

)
∼ lnn

Γ(1/2)
√
n

d’où, en divisant par 4−nCn :

fn ∼ 1√
π
n lnn.
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2 Etude des arbres m-aires de recherche

Dans cette section, nous allons nous concentrer sur le modèle de permutation
aléatoire. Dans un premier temps, nous nous intéressons au cas des arbres binaires de
recherche(m = 2), pour déterminer le comportement asymptotique de fn = E [Xn ].
Puis, nous considérerons m quelconque, ce qui nous conduira à des équivalents
asymptotiques moins précis, mais nous permettra de trouver, le cas échéant, des
distributions limites pour f(T ).

2.1 Développement asymptotique de fn = E [Xn ]

Théorème 7 Sous le modèle de permutation aléatoire, les valeurs moyennes des
coûts induits par des suites-test du type tn = nα(α > 0) admettent des dévelop-
pements asympotiques en puissances de n et de lnn. Les termes principaux sont
résumés dans le tableau suivant :

Suite-test (tn) Coût (fn)

nα (2 < α)
α + 1

α− 1
nα +O (nα−1)

n2 3n2 − 6n lnn + (10 − 6γ)n+O (lnn)

nα (1 < α < 2)
α + 1

α− 1
nα +Kαn+O (nα−1)

n 2n lnn + 2(γ − 1)n+ 2 lnn+ 2γ + 1 +O

(
1

n

)

nα (0 < α < 1) Kαn +
α + 1

α− 1
nα +Kα + o(1)

Démonstration: On rappelle l’équation établie au début de la première partie :
en posant f(z) =

∑
n≥0 fnz

n et t(z) =
∑

n≥0 tnz
n, on a la relation :

f(z) = (1 − z)−2

∫ z

0

t′(w)(1 − w)2dw

On remarque d’abord que si tn = nk, avec k ∈ N, l’intégration peut être menée
explicitement, étant donné que t(z) est alors une fraction rationnelle.

Sinon, il suffit d’examiner sur les éléments singuliers du type (1 − z)β les ef-
fets de la dérivation, de la multiplication par (1 − z)2, de l’intégration, puis de la
multiplication par (1 − z)−2.

On a alors la chaîne suivante :

c(1 − z)β
d

dz−→ −cβ(1 − z)β−1 ×(1-z)2−→ −cβ(1 − z)β+1

Pour continuer la chaîne, on va supposer que β + 1 6= −1 (sinon, un terme
logarithmique apparaît).

−cβ(1 − z)β+1
∫

−→ c
β

β + 2
(1 − z)β+2 ×(1-z)-2−→ c

β

β + 2
(1 − z)β
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Ainsi, un tel élément apporte à fn une contribution c
β

β + 2

(
n− β − 1

−β − 1

)
, qui est

équivalent à c
β

β + 2

n−β−1

Γ(−β)
(le traitement de termes logarithmiques est tout à fait

similaire). En particulier si tn = nα (α > 1), on sait que t(z) ∼ Γ(α+ 1)(1− z)−α−1,
au voisinage de 1, et donc on peut reprendre la chaîne ci-dessus avec c = Γ(α + 1)
et β = −α − 1. Ces étapes se résument alors ainsi :

tn = nα ⇒ t(z) ∼ Γ(α+1)(1−z)−α−1 ⇒ f(z) ∼ Γ(α+1)
α+ 1

α− 1
(1−z)−α−1 ⇒ fn ∼ α+ 1

α− 1
nα

Dans l’étape d’intégration, nous avons mis de côté le calcul des constantes. C’est
le deuxième cas du Théorème 4 qui nous fournit leur forme :

K[t] =

∫ 1

0

[
t′(w)(1 − w)2 −

(
t′(w)(1 − w)2

)
−

]
dw,

où f− représente la somme des éléments singuliers de f avec un exposant strictement
inférieur à −1. Cette constante étant ensuite multipliée par (1 − z)−2, le terme
résultant dans le développement de fn est donc K[t] · (n+ 1).

Dans le cas où tn croît moins vite que n, alors la partie divergente est absente et
alors :

K[t] =

∫ 1

0

t′(w)(1 − w)2 dw = 2
+∞∑

n=1

tn
(n + 1)(n+ 2)

.

Ces considérations nous incitent à définir les constantes suivantes, qui achèvent le
remplissage du tableau :

Kα = 2
+∞∑

n=1

nα

(n + 1)(n+ 2)
, si α < 1

et

Kα = 2

+∞∑

n=1

nα − Γ(α + 1)
(

n+α
α

)

(n+ 1)(n+ 2)
, si 1 < α < 2.

2.2 Théorèmes de transfert

Afin de déterminer des distributions limites, nous allons utiliser la méthode des
moments. Pour cela, nous devons donc chercher des équivalents asymptotiques pour
les moments de notre fonctionnelle additive f(T ).

Sous le modèle de permutation aléatoire, nous admettrons que la loi jointe de
la taille des sous-arbres (|L1|, . . . , |Lm|) est uniforme sur les

(
n

m−1

)
m-uplets d’entiers

positifs ayant pour somme n−(m−1). Posons µn(k) = E
[
Xk

n

]
(avecXn = f(T ) pour

|T | = n) et introduisons les notations
∑

j pour désigner la somme sur les m-uplets
(j1, . . . , jm) ayant pour somme n− (m− 1) et

∑
k la somme sur les (m + 1)-uplets
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(k1, . . . , km+1) d’entiers positifs ayant pour somme k. Alors, en notant ⊕ une somme
de variables indépendantes, on a :

µn(k) = E
[
Xk

n

]
= E

[
E
[
Xk

n||L1|, . . . , |Lm|
] ]

=
1(
n

m−1

)
∑

j

E [Xj1 ⊕ · · · ⊕Xjm
+ tn ]k

=
1(
n

m−1

)
∑

j

∑

k

(
k

k1, . . . , km, km+1

)
µj1(k1) · · ·µjm

(km)tkm+1

n

=
m(
n

m−1

)
n−(m−1)∑

j=0

(
n− 1 − j

m− 2

)
µj(k) + rn(k)

avec

rn(k) =
∑

k

∗
(

k

k1, . . . , km, km+1

)
tkm+1

n

1(
n

m−1

)
∑

j

µj1(k1) · · ·µjm
(km)

en notant
∑

k

∗ la même somme que
∑

k avec la condition supplémentaire que ki < k
pour i = 1, . . . , m. Nous avons ainsi établi une relation de récurrence linéaire de la
même forme pour tous les moments de Xn, la seule différence provenant du terme
rn(k). Notons d’ailleurs que rn(1) = tn, c’est-à-dire la suite-test.

Proposition 4 Sous le modèle de permutation aléatoire, les moments (an) d’une
fonctionnelle additive vérifient la récurrence suivante

an =
m(
n

m−1

)
n−(m−1)∑

j=0

aj + bn, n ≥ m− 1 (4)

avec les conditions initiales aj = bj, pour 0 ≤ j ≤ m− 2.

Notre démarche, présentée en introduction, consiste maintenant à considérer les
fonctions génératrices A(z) =

∑
n≥0 anz

n et B(z) =
∑

n≥0 bnz
n, afin d’en déduire le

comportement asymptotique de la suite (an). En fait, la récurrence liant an et bn se
transfère en l’égalité suivante :

A(m−1)(z) = B(m−1)(z) +m!(1 − z)−(m−1)A(z)

Le théorème ci-dessous nous explicite la solution de cette équation.

Théorème 8 (Théorème de transfert exact) Soit A et B les fonctions généra-
trices des suites (an) et (bn). Soit

B̂(z) = B(z) −
m−2∑

j=0

bjz
j =

∞∑

n=m−1

bnz
n (5)

Alors

A(z) =
m−1∑

j=1

cj(1 − z)−λj +
m−1∑

j=1

(1 − z)−λj

ψ′(λj)

∫ z

0

B(m−1)(ξ)(1 − ξ)λj+m−2dξ (6)

=

m−1∑

j=1

cj(1 − z)−λj + B̂(z) +m!

m−1∑

j=1

(1 − z)−λj

ψ′(λj)

∫ z

0

B̂(ξ)(1 − ξ)λj−1dξ (7)
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où ψ désigne le polynôme caractéristique

ψ(λ) = λm−1 −m! = λ(λ+ 1) · · · (λ+m− 2) −m!

ayant pour racines λ1 = 2, λ2, . . . , λm−1, ordonnées suivant les parties réelles dé-
croissantes. Dans l’équation (7), les coefficients c1, c2, . . . , cm−1 peuvent être écrits
explicitement

cj =
m!

ψ′(λj)

m−2∑

k=0

bk
k!

λk+1
j

Démonstration: Nous ne démontrons pas ici l’égalité (6) : celle-ci fait appel à
la résolution d’équations différentielles eulériennes et dépasse largement le cadre de
notre propos. Par contre, pour démontrer l’égalité entre (6) et (7), nous remarquons

que dans (6), B peut être remplacé par B̂. Nous utilisons alors plusieurs intégrations
par parties et l’Identité 2, produite en annexe. En notant

Â(z) = A(z) −
m−1∑

j=1

cj(1 − z)λj ,

nous trouvons après m− 2 intégrations par parties

Â(z) =
m−1∑

j=1

(1 − z)−λj

ψ′(λj)
(λj +m− 2) · · · (λj + 1)

∫ z

0

B̂′(ξ)(1 − ζ)λj dξ.

Mais

(λj +m− 2) · · · (λj + 1) =
λm−1

j

λj

=
ψ(λj) +m!

λj

=
m!

λj

,

et donc

Â(z) = m!
m−1∑

j=1

(1 − z)−λj

λjψ′(λj)

∫ z

0

B̂′(ξ)(1 − ξ)λj dξ.

Nous obtenons alors (7) en réalisant encore une intégration par parties, et en utilisant
l’Identité 1 avec λ = 0.

Théorème 9 (Théorème de transfert asymptotique)
– Si

bn = o(n) et
∞∑

n=0

bn
(n + 1)(n+ 2)

converge, (8)

alors

an =
K1

Hm − 1
n + o(n) (9)

où

K1 =

∞∑

j=0

bj
(j + 1)(j + 2)

et Hm =

m∑

i=1

1

i
(10)

21



– Si bn = K2(n+ 1) + hn où (hn) vérifie (8) (en remplaçant bn par hn), alors

an =
K2

Hm − 1
nHn +

K3

Hm − 1
n + o(n) (11)

avec

K3 =
∞∑

j=0

hj

(j + 1)(j + 2)
+K2

(
Hm − 1

2
− 1 +

H
(2)
m − 1

2(Hm − 1)

)

– Si bn = K4n
v + o(nv) avec v > 1, alors

an =
K4

1 − m!Γ(v+1)
Γ(v+m)

nµ + o(nv) (12)

Pour démontrer ce théorème, nous aurons besoin de plusieurs lemmes. Ceux-ci
nous permettrons en effet de contrôler les différents termes intervenant dans l’ex-
pression de A(z) donnée par le théorème de transfert exact 8.

Lemme 1 Soit Y (z) =
∑∞

n=0 ynz
n avec y0 = 0. Alors,

∀λ ∈ C [zn]

(
(1 − z)−λ

∫ z

0

(1 − ξ)λ−1Y (ξ)dξ

)
=

n−1∑

k=0

yk

k + 1

n∏

j=k+2

(
1 +

λ− 1

j

)
.

(13)

Démonstration: La fonction W (z) = (1− z)−λ
∫ z

0
(1− ξ)λ−1Y (ξ) dξ est l’unique

solution vérifiant W (0) = 0, à l’équation différentielle

W ′(z) = λ(1 − z)−1W (z) + (1 − z)−1Y (z).

Par conséquent wn = [zn]W (z), n ≥ 0, vérifie w0 = 0 et

nwn = λ
n−1∑

k=0

wk +
n−1∑

k=0

yk, n ≥ 1.

D’où

wn =
λ

n

n−1∑

k=0

wk +
1

n

n−1∑

k=0

yk, n ≥ 1.

Mais cette récurrence se résout aisément :

nwn − (n− 1)wn−1 = λwn−1 + yn−1,

soit

wn = wn−1

(
1 +

λ− 1

n

)
+
yn−1

n
,

ce qui, en itérant, nous démontre le lemme.
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Notons d’ores et déjà que le produit dans l’expression (13) peut être précisé ,
grâce à la formule de Stirling :

n∏

j=k+2

(
1 +

λ− 1

j

)
=

Γ(λ+ n)

Γ(k + λ+ 1)

Γ(2 + k)

Γ(1 + n)
=

nλ−1[1 +O (n−1)]

(k + 1)λ−1[1 +O ((k + 1)−1)]
(14)

Par ailleurs, dans le cas λ = 2, le Lemme 1 se résume à :

[zn]

(
(1 − z)−2

∫ z

0

(1 − ξ)Y (ξ)dξ

)
= (n+ 1)

n−1∑

k=0

yk

(k + 1)(k + 2)
(15)

Lemme 2
– Si Re(λ) < 2 et Y (z) =

∑∞
n=0 ynz

n vérifie y0 = 0 et yn = o(n), alors

[zn]

(
(1 − z)−λ

∫ z

0

(1 − ξ)λ−1Y (ξ)dξ

)
= o(n)

– Soit B̂ défini en (5), si la condition (8) est vérifié, alors

[zn]

(
(1 − z)−2

∫ z

0

B̂(ξ)(1 − ξ)dξ

)
= n

+∞∑

j=m−1

bj
(j + 1)(j + 2)

+ o(n)

Démonstration: Si Re(λ) < 2,

[zn]

(
(1 − z)−λ

∫ z

0

(1 − ξ)λ−1Y (ξ)dξ

)
=

n−1∑

k=0

yk

k + 1

n∏

j=k+2

(
1 +

λ− 1

j

)

= O

(
n−1∑

k=0

|yk|
k + 1

exp

(
(<λ− 1) ln

n

k + 1

))

= o

(
n<λ−1

n∑

k=1

k1−<λ

)

= o(n)

Si λ = 2, reprenons l’égalité (15), en remplaçant Y par B̂, et en se souvenant

que b̂k = 0 si 0 ≤ k ≤ m− 2 et b̂k = bk sinon.
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Alors

[zn]

(
(1 − z)−2

∫ z

0

(1 − ξ)B̂(ξ)dξ

)
= (n+ 1)

n−1∑

k=m−1

b̂k
(k + 1)(k + 2)

= n
n−1∑

k=m−1

bk
(k + 1)(k + 2)

+ o(n)

= n
+∞∑

k=m−1

bk
(k + 1)(k + 2)

− n
+∞∑

k=n

bk
(k + 1)(k + 2)

+ o(n)

= n

+∞∑

k=m−1

bk
(k + 1)(k + 2)

− n o(1) + o(n)

= n

+∞∑

k=m−1

bk
(k + 1)(k + 2)

+ o(n)

Lemme 3 Soit (bn) et (b′n) deux suites telles que

|bn| ≤ b′n pour tout n ≥ 0

alors les suites correspondantes (an) et (a′n) dans (4) vérifient

|an| ≤ a′n pour tout n ≥ 0

Démonstration: Ce résultat se démontre par une récurrence immédiate.
Démonstration: [du Théorème 9]

Pour le cas bn = o(n), il suffit de repartir de l’équation (7), et de voir que le coefficient
dominant dans le développement de an est celui apporté par les termes en (1−z)−λ1 =
(1 − z)−2. On a donc :

an = c1n+ o(n) + o(n) +
m!

ψ′(2)
×
(
n

+∞∑

k=m−1

bk
(k + 1)(k + 2)

+ o(n)

)
+ o(n),

avec c1 =
1

Hm − 1

m−2∑

k=0

bk
(k + 1)(k + 2)

et ψ′(2) = m!(Hm − 1) (où Hm =

m∑

i=1

1

i
). Le

premier point est donc acquis.

Remarque 1 En fait, les termes (1 − z)−λ engendrent des coefficients de Taylor
de l’ordre de n<λ−1. Il est donc normal que l’ensemble soit contrôlé par le terme
correspondant à λ1 = 2. Cela étant, le terme d’erreur peut être précisé si on dispose
d’informations sur λ2 (la racine de ψ ayant la plus grande partie réelle après λ1).
Par exemple, si 2 ≤ m ≤ 26, on sait qu’alors α2 = <λ2 <

3
2

et donc le résultat
précédent peut être amélioré ainsi :

Si 2 ≤ m ≤ 26 et bn = o(
√
n) alors

an =
K1

Hm − 1
n + o(

√
n) (16)

24



Pour le cas bn = K2(n+1)+hn, on considère d’abord le cas particulier bn = n+1,
soit B(z) = (1−z)−2, et donc B(m−1)(z) = m!(1−z)−(m+1). En reportant cette égalité
dans l’équation (6), on obtient :

an = (n+1)

[
c1 +m!

m−1∑

j=2

1

(2 − λj)ψ′(λj)

]
+

m!

ψ′(2)
[zn]

[
(1 − z)−2 log

(
(1 − z)−1

)]
+o(n).

Mais alors, d’après les Identités 3 et 4 énoncées en annexe (avec dans ce cas précis
c1 = 1) :

an = (n+ 1)

(
1 +

1

2

[
H

(2)
m − 1

(Hm − 1)2
− 1

])
+

1

Hm − 1
[(n+ 1)Hn − n] + o(n)

=
1

Hm − 1
nHn +

[
1

2
− 1

Hm − 1
+

H
(2)
m − 1

2(Hm − 1)2

]
n + o(n).

Ceci complète la démonstration du deuxième point pour bn = n + 1, le cas général
s’en déduit grâce au premier point, en utilisant le principe de superposition.

Pour le dernier point, on suppose d’abord que bn = (v + 1)n/n! ∼ nv/Γ(v + 1)
c’est-à-dire B(z) = (1 − z)−(v+1) et donc B(m−1)(z) = (v + 1)m−1(1 − z)−(v+m). En
reportant cette égalité dans l’équation (6), et en utilisant l’Identité 1 avec λ = v+1,

ainsi que l’égalité
(v + 1)m−1

(v + 1)m−1 −m!
=

[
1 − m!Γ(v + 1)

Γ(v +m)

]−1

, on obtient :

A(z) =

[
1 − m!Γ(v + 1)

Γ(v +m)

]−1

(1 − z)−(v+1) +O(|1 − z|−2).

Mais nous savons par ailleurs que [zn](1 − z)−(v+1) ∼ nv/Γ(v + 1), et ceci achève
donc l’étude du cas particulier.

Pour compléter le cas général, il suffit de montrer que si bn = o(nv), pour v > 1,
alors an = o(nv). Pour cela, soit ε > 0 ; alors il existe une suite (b′n) telle que |bn| ≤ b′n
pour tout n et b′n = ε(v + 1)n/n! pour n suffisamment grand. On a alors, d’après
l’étude du cas particulier :

a′n = ε′nv + o(nv), où ε′ =
ε

Γ(v + 1)

[
1 − m!Γ(v + 1)

Γ(v +m)

]−1

.

Et donc, d’après le Lemme 3 :

lim sup
n

|an|n−v ≤ ε′;

et puisque ε (et donc ε′) sont arbitraires, ceci achève le cas général.
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2.3 Distribution limite de Xn

2.3.1 Normalité asymptotique pour des fonctions-test "faibles"

Théorème 10 (TCL1 pour des fonctions-test "faibles")
Si 2 ≤ m ≤ 26 et la suite-test (tn) vérifie

(a)tn = o(
√
n) et (b)

∑

n>0

n−1 max
nδ≤k≤n

t2k
k
<∞ (17)

pour une certaine valeur δ ∈]0; 1[, alors l’espérance µn et la variance σn de la fonc-
tionnelle additive correspondante Xn vérifient respectivement

µn =
K1

Hm − 1
n+ o(

√
n) = µn+ o(

√
n) (18)

avec K1 défini en (10), et

σ2
n = σ2n+ o(n), où σ2 =

1

Hm − 1

∑

j>0

rj

(j + 1)(j + 2)
(19)

avec la suite (rn) définie par rj = 0 si 0 ≤ j ≤ m− 2 et

rn =
1(
n

m−1

)
∑

j

(tn + µj1 + · · ·+ µjm
− µn)2 (20)

De plus,
Xn − µn√

n

L−→
n→+∞

N (0, σ2)

Démonstration:
Nous allons démontrer la convergence en loi par la méthode des moments. Posons

X̃n = Xn − µ(n+ 1), µ̃n(k) = E

[
X̃n

k
]

et montrons par récurrence sur k ≥ 1 que

µ̃n(2k) ∼
(2k)!

2kk!
σ2knk (21)

µ̃n(2k − 1) = o(nk−(1/2)) (22)

On observe d’abord que les équations (18) et (19) rendent les équations précédentes
vraies pour k = 1.

1. Pour démontrer (18), il faut se rappeler que la suite des espérances (µn) des
variables (Xn) vérifie la relation de récurrence (4) avec bn remplacé par tn, et donc
que les fonctions génératrices A(z) et B(z) des suites (µn) et (tn) vérifient le théorème
de transfert exact . On a alors le résultat sur µn comme application directe de la
Remarque 1.

2. (19) est une simple application du théorème de transfert asymptotique ; il suffit
de vérifier que σn vérifie l’équation de récurrence (4), avec bn remplacé par rn (ceci
s’obtient en passant par la variance conditionnelle) puis que la suite (rn) vérifie les
hypothèses (8).
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Lemme 4 Sous les hypothèses du Théorème Central Limite 1, la suite (rn) vérifie
les hypothèses (8) du théorème de transfert asymptotique.

Démonstration: Comme µ̃n = µn − µ(n+ 1) (avec la notation µ̃n pour µ̃n(1)),
on peut réecrire rn sous la forme suivante :

rn =
1(
n

m−1

)
∑

j

[tn + µ̃j1 + · · ·+ µ̃jm
− µ̃n]2 , n ≥ m− 1

avec µ̃n = o(
√
n), d’après (18). Nous allons maintenant utiliser le résultat classique

suivant : pour tous réels ξ1, . . . , ξk,

[
k∑

i=1

ξi

]2

≤ k
k∑

i=1

ξ2
i . (23)

Appliqué à rn, cela donne

rn

m+ 2
≤ t2n + µ̃2

n +
m(
n

m−1

)
n−(m−1)∑

j=0

(
n− 1 − j

m− 2

)
µ̃2

j

et ceci établit la première des deux conditions (8).
Par ailleurs, au vu de cette inégalité, il suffit, pour établir la sommabilité de rn/n

2,
d’établir celle de µ̃2

n/n
2. En effet, une conséquence immédiate de (17) (hypothèses

du TCL1) est que
∑

n>0

t2n
n2

< +∞. De plus, nous disposons de l’estimation suivante :

n−2

∞∑

n=m−1

m(
n

m−1

)
n−(m−1)∑

j=0

(
n− 1 − j

m− 2

)
µ̃2

j = m(m− 1)

+∞∑

j=0

µ̃2
j

+∞∑

n=j+m−1

(
n−1−j
m−2

)

n2
(

n
m−1

)

≤ m(m− 1)

+∞∑

j=0

µ̃2
j

+∞∑

n=j+m−1

n−3

= O

(
∑

j>0

µ̃2
j

j2

)
< +∞.

Pour établir la sommabilité de µ̃2
n/n

2, il faut remonter aux deux premiers lemmes
intervenant dans la démonstration du théorème de transfert asymptotique, et no-
tamment à l’équation (14), afin d’obtenir un développement de µ̃n :

µ̃n = O(nα2−1) + tn − 1

Hm − 1
(n+ 1)

∞∑

k=n

t̂k
(k + 1)(k + 2)

+

m−1∑

j=2

O

(
nαj−1

n−1∑

k=0

|t̂k|
(k + 1)αj

)
,

avec αj = <λj (en particulier α2 < 3/2, puisque m ≤ 26) et t̂k = tk si k ≥ m − 1
et 0 sinon. En se souvenant de l’inégalité classique (23), il suffit donc d’étblir la
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sommabilité du carré de chacun des quatre termes, divisé par n2. Pour le premier
terme, le résultat est immédiat ; pour le deuxième, nous avons déjà énoncé le résultat
comme conséquence des hypothèses (17) du TCL1. Pour le troisième, nous utilisons
l’inégalité de Cauchy-Schwarz :

[
+∞∑

k=n

t̂k
(k + 1)(k + 2)

]2

≤ 1

n

[
+∞∑

k=n

√
n

√
k

(k + 1)(k + 2)

|tk|√
k

]2

= O

(
1

n

+∞∑

k=n

√
nk−3/2 t

2
k

k

)
= O

(
n−1/2

+∞∑

k=n

k−5/2t2k

)
,

et donc

∑

n>0

[
+∞∑

k=n

t̂k
(k + 1)(k + 2)

]2

= O

(
∑

n>0

n−1/2

+∞∑

k=n

k−5/2t2k

)

= O

(
∑

k

k−5/2t2kk
1/2

)
= O

(
∑

k>0

t2k
k2

)
< +∞

Remarquons ici que si m = 2 la démonstration est finie (le quatrième terme est
nul).

Pour ce dernier, dans le cas général, il suffit (toujours d’après (23)) d’établir la
sommabilité de

n2ρ−4

[
n−1∑

k=1

|tk|
kρ

]2

pour tout réel ρ < 3/2. Pour ceci, nous séparons la somme en
∑

k<nδ et
∑

nδ≤k<n et
faisons une fois de plus appel à l’inégalité (23).

Pour la somme
∑

k<nδ nous utilisons seulement tk = O
(√

k
)

et nous remarquons
que :

n2ρ−4

[
∑

k<nδ

O
(
k(1/2)−ρ

)
]2

= O
(
n2ρ−4

(
nδ
)3−2ρ

)
= O (nτ )

avec τ < −1.
Pour la somme

∑
nδ≤k<n nous utilisons à nouveau l’inégalité de Cauchy-Schwarz :

n2ρ−4


 ∑

nδ≤k<n

|tk|
kρ




2

= n2ρ−4n3−2ρ


 ∑

nδ≤k<n

k(1/2)−ρ

n(3/2)−ρ

|tk|
k1/2




2

= O


n−1

∑

nδ≤k<n

k(1/2)−ρ

n(3/2)−ρ

t2k
k


 = O

(
n−1 max

nδ≤k<n

t2k
k

)
,

qui est sommable d’après l’hypothèse (17). Ceci achève la démonstration de notre
lemme.
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Démonstration: [fin de la démonstration du Théorème 9]
3. De la même manière que nous avions établi l’équation de récurrence fondamentale
(4), on établit que la suite (µ̃n(k)) vérifie :

µ̃n(k) =
m(
n

m−1

)
n−(m−1)∑

j=0

(
n− 1 − j

m− 2

)
µ̃j(k) + rn(k)

avec

rn(k) =
∑

k

∗
(

k

k1, . . . , km, km+1

)
tkm+1

n × 1(
n

m−1

)
∑

j

µ̃j1(k1) · · · µ̃jm
(km) (24)

où
∑

k

∗ désigne la même somme que
∑

k avec la condition supplémentaire que
ki < k pour i ∈ {1, . . . , m}. On remarque d’ailleurs que l’équation vérifiée par
µ̃n(k) est de la forme (4). Nous pourrons donc appliquer le théorème de transfert
asymptotique après avoir évalué rn(k) asymptotiquement. Soit donc k ≥ 2 fixé et
supposons (21) − (22) établis pour tous les entiers inférieurs strictements à k. On
calcule alors rn(2k) en isolant la somme sur tous les m-uples (k1, . . . , km) d’entiers
positifs, tous inférieurs strictement à k, et de somme k, notée

∑
k

∗∗. Ainsi,

rn(2k) = o(nk) +
∑

k

∗∗
(

2k

2k1, . . . , 2km

)
1(
n

m−1

)
∑

j

µ̃j1(2k1) · · · µ̃jm
(2km)

= o(nk) +
∑

k

∗∗
(

2k

2k1, . . . , 2km

)
1(
n

m−1

)
∑

j

(2k1)!

2k1k1!
σ2k1j1

k1 · · · (2km)!

2kmkm!
σ2kmjm

km

= o(nk) +
(2k)!

2kk!
σ2knk

∑

k

∗∗
(

k

k1, . . . , km

)
1(
n

m−1

)
∑

j

(
j1
n

)k1

· · ·
(
jm
n

)km

Mais

1(
n

m−1

)
∑

j

(
j1
n

)k1

· · ·
(
jm
n

)km

−→
n→∞

∫

U

xk1

1 · · ·xkm−1

m−1 (1 − x1 − · · ·xm−1)
kmdx1 · · ·dxm−1

= (m− 1)!
Γ(k1 + 1) · · ·Γ(km + 1)

Γ(k +m)
=

1(
k

k1,...,km

)(
k+m−1

m−1

)

avec U = {(x1, . . . , xm−1) ∈ [0, 1]m−1/
∑m−1

i=1 xi ≤ 1}. Puisque le nombre de termes
intervenant dans

∑∗∗
k

est
(

k+m−1
m−1

)
−m, nous avons donc :

rn(2k) =
(2k)!

2kk!
σ2knk

(
k+m−1

m−1

)
−m

(
k+m−1

m−1

) + o(nk)

=
(2k)!

2kk!
σ2knk

[
1 − m!Γ(k + 1)

Γ(k +m)

]
+ o(nk).

On démontre de même que rn(2k− 1) = o(nk−(1/2)), ce qui achève la démonstra-
tion.

Le théorème suivant examine le cas extrême où tn ∼ √
n, ou bien tn ∼ √

nL(n)
avec L une fonction à variation lente.
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Théorème 11 (TCL2 pour des fonctions-test "faibles")
Si 2 ≤ m ≤ 26 et la suite-test (tn) vérifie

tn ∼ √
nL(n)

où L est une fonction à variation lente, alors l’espérance µn de la fonctionnelle
additive correspondante Xn vérifie

µn =
K1

Hm − 1
n− (3

2
)m−1

m! − (3
2
)m−1

√
nL(n) + o(

√
nL(n)) (25)

avec K1 défini en (10).

Si
∑

k>0
L2(k)

k
< +∞, alors la variance σ2

n vérifie (19)-(20), et on pose alors
s2(n) = σ2n.

Si
∑

k>0
L2(k)

k
= +∞, alors σ2

n ∼ s2(n) = σ2n
∑

k≤n
L2(k)

k
, où nous définissons

σ2 =

(
(3

2
)m−1

)2 (
π
4
(m− 1) + 1

)
− (m!)2

(Hm − 1)
(
m! − (3

2
)m−1

)2

De plus, dans les deux cas

Xn − µn

s(n)

L−→
n→+∞

N (0, 1)

Démonstration: Cette démonstration est assez similaire à la précédente, mais
amène à énoncer diverses variantes des lemmes rencontrés jusque-ici, et donc à alour-
dir le propos. Nous l’admettrons donc.

Remarque 2 Le deuxième cas de ce théorème a le mérite de nous fournir explici-

tement la variance limite : dans le cas m = 2, celle-ci est de
9

2
π − 14.

Remarque 3 Dans le cas m ≥ 27, la recherche des coefficients de Taylor, à partir
du théorème de transfert, nous amène à la conclusion négative qu’en général, des
phénomènes de périodicité apparaissent pour µ̃n et donc qu’il n’y a pas de distribu-
tion limite naturelle pour une quelconque normalisation de Xn. Chern & Hwang [1]
fournissent des exemples de telles situations.

2.3.2 Fonctions-test modérées et élevées

Ces deux derniers théorèmes nous affirment l’existence d’une distribution limite
dans le cas tn ∼ nβ avec β > 0.5. Plus précisément, nous allons voir que si cette
distribution existe pour n’importe quelle valeur de m si β > 1, elle n’existe (en
général) que pour m inférieur à un certain entier m0 si 0.5 < β < 1.

Théorème 12 Si la suite-test (tn) vérifie

tn ∼ nβL(n) avec 0.5 < β < 1
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avec L une fonction à variation lente et α2 < 1+β, alors l’espérance de la fonction-
nelle additive Xn sur les arbres m-aires de recherche, sous le modèle de permutation
aléatoire, vérifie

µn = µn− (1 + β)m−1

m! − (1 + β)m−1
nβ + o(nβL(n)), µ =

K1

Hm − 1

où K1 est défini en (10). De plus,

Xn − µn

nβL(n)
L−→

n→+∞
Yβ,

où Yβ est une variable aléatoire non gaussienne, et uniquement déterminée par β.

Remarque 4 Nous avons déjà vu que α2 = <(λ2) < 3
2

si m ≤ 26. Mais, par
ailleurs, nous savons que α2 augmente avec m. Ainsi, pour une valeur β ∈]1/2; 1[
fixée, la condition α2 < 1 + β équivaut à m ≤ m0 pour un certain m0 ≥ 26.

Démonstration: Nous reprenons les notations X̃n = Xn − µ(n + 1), µ̃n =

µn − µ(n+ 1) et µ̃n(k) = E

[
X̃k

n

]
. Nous savons alors que :

µ̃n = O(nα2−1) + tn − 1

Hm − 1
(n + 1)

∞∑

k=n

t̂k
(k + 1)(k + 2)

+m!

m−1∑

j=2

1

ψ′(λj)
[zn]

(
(1 − z)−λj

∫ z

0

B̂(ξ)(1 − ξ)λj−1dξ

)

Nous obtenons alors le terme en nβL(n) dans le développement de µ̃n grâce aux
Lemmes 1 et 2 et aux Identités 1 et 3 (cf annexes) :

1 − 1

(1 − β)(Hm − 1)
+m!

m−1∑

j=2

1

((1 + β) − λj)ψ′(λj)
= − (1 + β)m−1

m! − (1 + β)m−1
.

Pour établir la convergence en loi, nous allons montrer par récurrence sur k que
µ̃n(k) vérifie, pour une certaine suite (gk),

µ̃n(k) = gkn
kβLk(n) + o(nkβLk(n)). (26)

L’affirmation est vraie pour k = 1 avec

g1 = − (1 + β)m−1

m! − (1 + β)m−1
=

(
1 − m!Γ(β + 1)

Γ(β +m)

)−1

.
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On suppose donc l’égalité vraie pour tout entier strictement inférieur à k, et on
reprend l’expression (24) de rn(k) :

rn(k) = o(nkβLk(n))

+
∑∗

k

(
k

k1, . . . , km, km+1

)
(nβL(n))km+1

× 1(
n

m−1

)
∑

j

gk1
(jβ

1L(j1))
k1 · · · gkm

(jβ
mL(jm))km

= o(nkβLk(n))

+
∑∗

k

(
k

k1, . . . , km, km+1

)
(nβL(n))kgk1

· · · gkm

× 1(
n

m−1

)
∑

j

(
j1
n

)k1β

· · ·
(
jm
n

)kmβ
Lk1(j1) · · ·Lkm(jm)

Lk1+···+km(n)
.

Mais, en définissant B(x1, · · · , xm) =

∏m
j=1 Γ(xi)

Γ(
∑m

i=1 xi)
, on peut démontrer que

1(
n

m−1

)
∑

j

(
j1
n

)k1β

· · ·
(
jm
n

)kmβ
Lk1(j1) · · ·Lkm(jm)

Lk1+···+km(n)
−→
n→∞

(m−1)!B(k1β+1, . . . kmβ+1),

et donc

rn(k) = o(nkβLk(n))

+ nkβLk(n)(m− 1)!
∑∗

k

(
k

k1, . . . , km, km+1

)
gk1

· · · gkm
B(k1β + 1, . . . , kmβ + 1).

En utilisant le troisième point du théorème de transfert asymptotique 9 (légèrement
modifié par la présence de L(n)) avec v = kβ, nous obtenons :

µ̃n(k) = o(nkβLk(n))

+nkβLk(n)
(m− 1)!

1 − m!Γ(kβ+1)
Γ(kβ+m)

∑∗

k

(
k

k1, . . . , km, km+1

)
gk1

· · · gkm
B(k1β+1, . . . , kmβ+1).

Donc, en définissant récursivement gk par

gk =
(m− 1)!

1 − m!Γ(kβ+1)
Γ(kβ+m)

∑∗

k

(
k

k1, . . . , km+1

)
gk1

· · · gkm
B(k1β + 1, . . . , kmβ + 1),

avec g0 = 1, nous constatons que l’égalité (26) est encore vraie au rang k. Nous
admettrons ce dernier lemme, très technique :

Lemme 5 Les réels gk sont les moments d’une unique distribution.
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Notons cette distribution Yβ, alors par la méthode des moments, on peut affirmer
que

Xn − µn

nβL(n)

L−→
n→+∞

Yβ.

Remarque 5 Sans donner plus d’explications sur son origine, Kapur [5] introduit
une variable Y définie par

Y
L
=

m∑

j=1

Sβ
j Yj + 1, pour β > 0.5, β 6= 1

où les (Yj) sont des copies indépendantes de Y et où (S1, . . . , Sm) est uniformément
réparti sur le (m − 1)-simplexe : {(s1, . . . , sm/sj ≥ 0 et

∑m
j=1 sj = 1}. Il démontre

alors que cette variable Y est unique, puis que ses moments sont précisément les
moments gk du lemme précédent. Par conséquent, la distribution de cette variable Y
est la distribution limite de notre théorème.

Remarque 6 Comme dans le cas des suites-test faibles, si α2 > 1 + β (donc si
m > m0), on arrive (en général) à la conclusion négative que des phénomènes de
périodicité apparaissent pour µ̃n.

On démontre de manière tout à fait semblable le théorème suivant, pour des
suites-test “élevées”.

Théorème 13 Si la suite-test (tn) vérifie

tn ∼ nβL(n) avec β > 1

avec L une fonction à variation lente, alors la fonctionnelle additive Xn sur les
arbres m-aires de recherche, sous le modèle de permutation aléatoire, vérifie

Xn

nβL(n)

L−→
n→+∞

Yβ

où Yβ est une variable aléatoire non gaussienne, et uniquement déterminée par β.

33



2.4 Simulations dans le cas m = 2

Densité de
Xn − µn√

n
pour n = 10000

Dans cet exemple, nous avons cherché à illustre le théorème central limite 10.
Pour cela, nous avons simulé des arbres binaires de recherche à 10000 clés à partir
de permutations aléatoires (suivant un modèle uniforme) de {1, 2, . . . , 10000}. Nous
avons alors calculé explicitement, pour chaque arbre, la valeur de la fonctionnelle
additive correspondante, dans le cas tn = n0.1. Sur un échantillon de 6000 tirages,

nous pouvons constater la convergence de
Xn − µn√

n
vers la loi normale, ici représentée

en pointillés. Par ailleurs, l’écart constaté entre la moyenne de Xn−µn√
n

et la moyenne
nulle de la normale centrée est de 0.02 précisément. Ce résultat est à rapprocher du
développement asymptotique proposé dans le Théorème 7. En effet

1√
10000

(
0.1 + 1

0.1 − 1
100000.1 + 2

∑

n≥0

n0.1

(n+ 1)(n+ 2)

)
≈ −0.0193
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Cet exemple illustre le théorème central limite 11. Il correspond au cas limite
tn =

√
n, pour lequel nous avons encore convergence vers une distribution gaus-

sienne.

En ligne continue est représentée la densité de
Xn − µn√
n
∑n

i=1
1
i

, et en pointillés la densité

de la loi normale (non centrée, mais de moyenne -1) de variance 9π/2 − 14. Nous
avons préféré décaler la gaussienne pour pouvoir comparer le plus justement possible
les courbes. L’échantillon simulé est de taille 10000 et est calculé pour des arbres
de taille 10000. Comme dans l’exemple précédent, il est intéressant de regarder les
écarts à la moyenne limite, théoriquement nulle. En effet, la moyenne pour l’échan-
tillon simulé est de −0.942 (arrondi à 10−3). Or, en appliquant le développement
proposé par l’équation (25), nous avons le résultat :

1√
10000

(
0.5 + 1

0.5 − 1
100000.5

)
≈ −0.959,

Il est à noter que dans ce théorème limite, la vitesse de convergence n’est pas en√
n, mais en

√
n lnn.
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Ce troisième exemple illustre le Théorème 12, c’est-à-dire le cas où tn ∼ nβ, pour

0.5 < β < 1 (ici β = 0.75). La distribution limite de
Xn − µn

nβ
, dans ce cas de figure,

n’étant définie que par ses moments, il est très difficile d’obtenir une représentation
correcte de sa densité théorique. La méthode de développement sur une base de
polynômes de Legendre amène à des résultats très peu exploitables, et en tout cas
bien plus mauvais que la densité obtenue pour un échantillon de taille 10000. On
peut ainsi se satisfaire d’une moyenne estimée de −6.99 (à comparer à une moyenne
théorique pour la variable Y0.75 valant g1 = −7) et d’une variance estimée de 0.519
(à comparer avec une variance théorique valant g2 − g2

1 ≈ 0.540).

Par ailleurs, en posant Zn =
Xn − µn

nβ
, et en regardant les moments centrés

d’ordre impair de Zn, on peut facilement constater que Zn n’est pas gaussienne. En
effet, les moments centrés d’ordre 3, 5 et 7 de Zn valent 0.23, 1.28 et 8.33, alors qu’ils
devraient être nuls si Zn suivait une loi normale.
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Ce dernier exemple illustre le Théorème 13, c’est-à-dire le cas où tn ∼ nβ, pour

β > 1. Dans ce cas de figure, la densité de la distribution limite Yβ de
Xn

nβ
pose

le même problème de représentation que précédemment. Néanmoins, là encore, on
peut se satisfaire de la moyenne de l’échantillon (dont la densité simulée est en ligne
continue) valant 2.998 (à comparer à la valeur théorique g1 = 3), et de sa variance

0.321 (à comparer avec une variance théorique de g2 − g2
1 =

1

3
). La loi normale de

moyenne 3 et de variance
1

3
, ici dessinée en pointillés, est là pour se convaincre du

caractère non-gaussien de la distribution limite.
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Perspectives et conclusions

Il est rassurant de constater que nous retrouvons, via des outils totalement dif-
férents, des résulats bien connus sur le comportement d’algorithme récursif, par
exemple le cas du Quicksort [6] (correspondant à tn = n), algorithme de tri rapide
d’une liste, dont on sait que sa complexité moyenne est en n lnn, terme que l’on
retrouve dans le développement obtenu au Théorème 7.

Plus généralement, les techniques d’analyse de singularités sont, on l’a vu, un ou-
til très puissant pour relier le comportement d’une fonction complexe au voisinage de
sa singularité, avec le comportement de ses coefficients de Taylor, en l’occurence des
coûts de complexité moyens. Néanmoins, si le schéma de raisonnement proposé par
les travaux de Kapur semble assez générique, sa mise en application dépend fonda-
mentalement du modèle de probabilité sous lequel “vivent” nos arbres. Par exemple,
l’étude des moments et des lois limites sous le modèle uniforme conduit à des distri-
butions qui ne sont plus nécessairement gaussiennes (comme c’était le cas pour notre
étude avec α ≤ 0.5), mais uniquement déterminées par leurs moments, comme pour
notre variable Yβ. De plus, un point intéressant de son étude est que la normalisation

à effectuer est en
1

nα
, quelle que soit la valeur de α (différente de 0.5). Par ailleurs,

cette étude du modèle uniforme est sensiblement plus technique et fait appel, no-
tamment, aux développements asymptotiques des fonctions polylogarithmes Liα et
de leurs dérivées successives.

Dans notre cas, pour revenir au contexte initial présenté en introduction, celui
des puces à ADN, et de la modélisation par des arbres aléatoires, cet aspect pose le
problème sous-jacent des estimateurs choisis pour déterminer cette loi de probabilité.
L’équipe de bio-informatique de Lille 2 travaille actuellement à la détermination de
ces estimateurs (dans le cadre d’arbres m-aires, avec m > 2), mais une fois ce travail
achevé, il restera à regarder comment se comportent nos équations de récurrence
reliant fn et tn, selon que l’on se situe sous une loi estimée ou sous la loi “réelle”.
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A Propriétés du polynôme caractéristique ψ(λ)

Le polynôme ψ est défini par ψ(λ) = λm−1 −m! = λ(λ+ 1) · · · (λ+m− 2)−m!.
Il a pour racines racines λ1 = 2, λ2, . . . , λm−1, ordonnées suivant les parties réelles
décroissantes.

Ce polynôme intervient dans la résolution de l’équation différentielle :

A(m−1)(z) = B(m−1)(z) +m!(1 − z)−(m−1)A(z).

Les différentes identités utilisées dans ce mémoire concernant ce polynôme sont
résumées ici.

Identité 1 Si λ /∈ {λ1, . . . , λm−1},
m−1∑

j=1

1

(λ− λj)ψ′(λj)
=

1

ψ(λ)

Soit r et n des entiers naturels non nuls, nous notons H
(r)
n le nombre harmonique

d’ordre r

H(r)
n =

n∑

j=1

1

jr
.

Pour r = 1 nous notons Hn = H
(1)
n le nombre harmonique usuel.

Identité 2 Pour 0 ≤ k ≤ m− 3,

m−1∑

j=1

λk
j

ψ′(λj)
= 0.

Identité 3

ψ′(2) = m!(Hm − 1) and ψ′′(2) = m![(Hm − 1)2 − (H (2)
m − 1)].

Identité 4
m−1∑

j=2

1

(λj − 2)ψ′(λj)
=

1

2(m!)

[
1 − H

(2)
m − 1

(Hm − 1)2

]
.
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B Programmes utilisés pour les simulations

Les programmes utilisés pour la simulation ont été réalisés en langage R.

Création d’un arbre à partir d’une liste

Arbre <- function(x)
{ z<-list(racine=c(0,0),gauche=c(),droit=c())
z $ racine=c(x[1],length(x))
z1=x[which(x<x[1])]
z2=x[which(x>x[1])]
if (length(z1) !=0)
z $gauche=Arbre(z1)
if (length(z2) !=0)
z $droit=Arbre(z2)
z
}

Création d’une permutation aléatoire de taille 10000

Permut <- function(a)
{
for (i in 1 :10000)
{
t=floor(runif(1,1,i+1))
v=a[t]
a[t]=a[i]
a[i]=v
}
end
a
}

40



Calcul de la complexité Xn pour un arbre et une suite (tn)

donnés

Dans ce programme, l’entrée à fournir est un arbre.

Complexity <- function(a)
{
if (length(a$racine)==2)
o=Complexity(a$gauche)+Complexity(a$droit)+(a$racine[2]) ˆ 0.5
o
}

Il va de soit que la puissance 0.5 peut être remplacée par n’importe quelle puis-
sance α.

Programme standard pour obtenir un échantillon de taille 5000

construit à partir d’arbres à 10000 clés

w=c()
for (i in 1 :5000)
w=c(w,Complexity(Arbre(Permut(1 :10000))))
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