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Introduction

Motivations

Nous allons dans ce mémoire étudier des fonctionnelles additives sur des arbres
aléatoires, distribués selon différents modeéles de probabilités. Typiquement, ces fonc-
tionnelles peuvent étre vues comme des cotits de complexité pour des algorithmes de
type “Diviser pour régner” - par exemple, la recherche d’un motif -. Nous allons ainsi
établir des résultats concernant le cotit asymptotique de ce type d’algorithmes. Ce
travail est basé sur les travaux de thése de Kapur [5], eux-mémes largement inspi-
rés des techniques d’analyse de singularités, développées par Flajolet [3]. Il s’inscrit
dans la prolongation des recherches actuelles de ’équipe de bio-informatique de Lille
2, relatives a la modélisation de puces & ADN par des arbres pondérés [7]. Ces re-
cherches se concentrent actuellement sur la détermination d’une loi de probabilité
asscoiée a ces arbres. Cette loi connue, ce mémoire permettra d’étudier la complexité
des algorithmes liés a ce modéle.

Vocabulaire

Nous définissons dans un premier temps les notions sur lesquelles se fonde ce mé-
moire, & savoir arbres m-aires de recherche, fonctionnelles additives. Nous définirons
ensuite les modeéles de probabilité sur lesquels nous allons travailler.

Un arbre m-~aire est un arbre avec, au plus, m “descendants” pour chaque noeud.
En termes récursifs, un arbre m-aire est, soit vide, soit un noeud principal (appelé
racine) lié¢ & un ensemble de m sous-arbres, chacun étant lui-méme un arbre m-aire.

Un arbre m-aire de recherche est un arbre m-aire dans lequel chaque noeud
peut contenir m — 1 éléments d’un ensemble ordonné (ensemble des “clés”). Ainsi,
sans perte de généralité, on peut supposer I'ensemble des clés égal a {1,2,...,n}.
L’arbre m-aire de recherche correspondant a une suite de n clés distinctes se construit
ainsi :

1. Sin < m , toutes les clés sont stockées dans la racine en ordre croissant.

2. Sin > m, alors les m — 1 premiéres clés sont stockées dans la racine en ordre
croissant. Les n — (m — 1) restantes sont stockées dans les sous-arbres avec la
condition suivante : si 0y < 09 < ... < 0,,_1 représente la suite ordonnée des
clés contenues dans la racine, alors les clés contenues dans le j-iéme sous-arbre
sont toutes celles comprises entre o; et 041, avec la convention oy = 0 et
oy =n+ 1.

3. Tous les sous-arbres sont des arbres m-aires de recherche répondant aux deux
premiéres conditions.

Soit 7" un arbre m-aire de recherche, nous noterons |T'| le nombre de clés stockées
dans T', et L;(T) le j-iéme sous-arbre issu de la racine de 7', pour 1 < j < m.

Soit x un noeud de 7', nous noterons 7). le sous-arbre de T" composé de x et de
ses descendants. Ces notations sont illustrées Figure 1.
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F1G. 1 — Exemple de notations pour I’arbre quaternaire 7. Dans cet exemple, |T'| =
15 and T, = Ly. De plus, l'arbre T est construit a partir de la suite
(7,10,12,1,4,5,2,6,3,8,11,14,15,13,9)

Nous pouvons maintenir définir une fonctionnelle additive :

Définition 1 Soit m > 2 et f une fonctionnelle définie sur ’ensemble des arbres m-
aires de recherche, a valeurs réelles. Nous dirons que f est une fonctionnelle additive
si elle vérifie la récurrence

m

F(T) =Y F(LAT) + tyry (1)

i=1

pour tout arbre T tel que |T| > m — 1, et pour une suite de réels (t,)n>0 firée, que
nous appelerons “suite-test”.

Comme nous 'avons déja précisé, f(T') doit étre vu comme la complexité d’un al-
gorithme récursif sur un arbre T', algorithme qui nécessite une complexité ¢ 7| initiale
(comparaisons, opérations arithmétiques...etc) puis effectue m appels récursifs.

Il nous reste maintenant a préciser les modeles de probabilité sous lesquels nous
allons tirer nos arbres “au hasard”.

Modéles de probabilité

D’aprés la description des arbres de recherche effectuée précedemment, toute
permutation de {1,2,...,n} engendre un arbre m-aire de recherche.

Nous parlerons de modéle uniforme sur ’ensemble des arbres m-aires de re-
cherche, dans le cas ol chaque arbre, & n clés, a la méme probabilité. Dans ce cas,
cette probabilité est simplement 'inverse du nombre d’arbres m-aires de recherche
a n clés. Dans le cas m = 2, ce nombre est le n-iéme nombre de Catalan, et c’est
pourquoi nous parlerons plutét du modéle de Catalan.

Si nous mettons maintenant une probabilité uniforme sur les n! permutations
de {1,2,...,n}, alors les arbres ne sont plus distribués selon le modéle uniforme.
Par exemple, si m = 2 et n = 3, le nombre d’arbre binaires a trois clés est C3 =
5, mais les permutations (213) et (231) engendrent le méme arbre, qui aura donc
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pour probabilité

aléatoire.

= é Nous parlerons dans ce cas de modéle de permutation

1 Analyse de singularités

1.1 Position du probléme

Partons d’un exemple simple, que nous traiterons complétement dans la section
suivante. On considére le cas m = 2 et on note notre fonctionnelle f(T') = X,,, pour
|T| = n > 0. On peut alors reformuler I’équation (1) ainsi :

Xn = XKn + Xn—l—Kn + tn

ou K, désigne une variable aléatoire indépendante de X,, et représentant le nombre
de clés contenues dans le sous-arbre gauche. Dans le cas du modéle de permutation
aléatoire, on voit facilement que P(K,, = k) = % pour 0 < k£ < n — 1. En effet, si
on note ¢ une variable uniformément distribuée sur I’ensemble des permutations de
{1,2,...,n},on a

P(K, = k) = P(c(1) = k+1) = % :%

Dongc, en conditionnant par K, et en notant f,, = E[ X, ], on obtient

n—1

1
n=1tn — n—1—
f +nk§:;fk+f -

n—1

avec la condition initiale fy = t,.

Le probléme qui se pose alors est le suivant : la suite (¢,,) étant connue, comment
déterminer le comportement asymptotique de f,, 7

Pour cela, on considére les fonctions génératrices f(z) = > o fu2" et
t(z) = 3,50 tn2™. L’équation reliant f,, a t, se transfére alors, via des manipulations
classiques, en une équation reliant f(z) a ¢(z) :

Fo) =t +2 [ )y

équation qui se résout, par dérivation, et par méthode de variation de la constante,
en :

f6) = (127 [ ()1 - wide
0
en supposant, sans perte de généralité, que fo =ty = 0.
Sous cette forme, on peut traiter un premier exemple directement.

Sit, = ("I, ie t(z) = (1 —2)"*"1, alors

«



- Sia#1
fe) = “lra et ooy

a—1
- ) e

1
— Sia=1,alors f(z) = ﬁ log = et f,, = 2(n+1)(H,41—1), avec H,, = E -
i

i=1

le n-iéme nombre harmonique.

Or, d’apreés la formule de Stirling, (n + a) ~ m
! !

,’,LOé

On peut donc résumer ces résultats ainsi :
n-+ o a+1 n®
t, = ,a>1 = f,~
( a ) 4 a—1T(a+1)
t,=n+1 = f,~2nlogn

1
tn:(n+Q),O<a<1 = fu~ rta
«

11—«

Dans cet exemple, le choix de t,, nous a conduit & une expression explicite de ¢(z)
et donc de f(z). Mais si t,, = y/n ou t,, = Inn, nous n’aurons plus de formule expli-
cite, et nous devrons alors nous contenter d’équivalents asymptotiques, au voisinage
de 1, pour t(z2).

L’exemple traité nous permet d’esquisser le raisonnement général, et sur lequel
nous allons mettre des bases théoriques dans les paragraphes suivants :

— Trouver une relation entre f,, et t,

— En déduire une relation entre f(z) et t(2)

— Chercher un développement asymptotique pour f(z)

— Conclure sur le comportement asymptotique de f,,.

1.2 Développement singulier

Lorsqu’une fonction f posséde une unique singularité, il est toujours possible,
quitte a effectuer un changement de variable, de la ramener en z = 1. Partant de ce
constat, une famille de fonctions assez naturelle pour effectuer nos développements
asymptotiques est celle des fonctions {(1 — 2)¢, « € R}.

Définition 2 Une fonction définie par une série entiére ayant un rayon de conver-
gence égal a 1 est dite A-réguliere si elle peut étre prolongée analytiquement, a ’ex-
ception de z =1, dans un domaine

A(g,n) ={z/ || <1+mn, |arg(z — 1)[ > ¢}
avecn > 0 et 0 < ¢ < w/2. On dit qu’'une fonction f admet un développement
A-singulier en z=1 si elle est A-réquliere et s’il existe A tel que

fz) =) call = 2)* +O(1 = 2) (2)

n=0



pour une suite de complexes (cn)o<n<n €t une suite de réels (o )o<n<n telle que
o, < A.

Le choix d’un tel domaine d’analyticité permet la mise en place de théorémes
reliant le comportement de f(z) au voisinage de sa singularité z = 1 avec le compor-
tement asymptotique de ses coefficients de Taylor. Nous faisons appel a la notation

suivante : si f(2) = > 5 fa2", on note f, = [z"]f(2).

Théoréme 1 Si f(z) admet un développement A-singulier de la forme (2) wvalide
dans un domaine A, alors

icn< o 11) +0 (k=47

La seule partie & démontrer est en fait celle concernant le terme d’erreur :

Théoréme 2 Soit f une fonction analytique dans un domaine A(¢py,m1), avecn; > 0
et 0 < ¢ < 3.
Si f(2) = O (|1 = z|*) pour un certain réel «, alors

fi=["f(z) =0 (k™7)

Démonstration:  La condition f(z) = O (|1 — z|%) se traduit par I'existence
d’une constante K vérifiant pour tout z # 1

f(2)] < K[1—z[*. (3)
D’aprés la formule de Cauchy, nous avons

1 dz

fo= 5 - (Z)W

ou O désigne n’importe quel contour orienté positivement, entourant 'origine, et
a 'intérieur de A : nous choisissons le contour suivant, orienté positivement : C' =

M U2 Uys Uy, avec :
1
n o= {212 =1 = 1 larg(z — 1)] 2 9}

1
= {5/ 7 <l =1L |2 < 1+ arg(z — 1) = 6}
% = {a/12 = 14, arg(s — 1| > 6}

1
u o= o/ ¢ < le =101 < 1+ Jarg(z — 1) =~}

ol 5 > ¢ > ¢1 et 0 <n <, desorte que le contour C' soit effectivement intérieur a
A. Nous allons maintenant évaluer les contributions des intégrales sur les différents

chemins, en posant
i _
e = 227‘(‘/ 1z z’“*l'




1. Petit cercle : d’aprés (3), on a, en utilisant des majorations immédiates, pour

k > 4,
« —k—1
I A I S (T
il = 2m (k k k
<5 (KE)
2. Partie rectiligne : on remarque d’abord que, pour des raisons de symétrie, la

majoration obtenue pour | f,i2)| sera également valable pour | fk(;4)\. On pose w = €%,
et on effectue le changement de variable z = 1 + %’f On obtient alors

kE o —k—1
2)) < L K 12 1 wt dt
=50 ) (k % p
1 [ wt|
< (Kk~o 1Y) . — |14+ =— dt
- ( ) 27?/1 + k

Dans cette majoration, E est défini de telle sorte que 75 et 3 se rejoignent : préci-
sément E est la racine positive de I'équation |1 + Ee®| = 1 + 5. Il reste maintenant
a majorer l'intégrale, uniformément en k. Or,

wt wt t
1+ —|>1 ) =14+=
’+k’_ —i—Re(k) +kcos¢

Par conséquent,

@) i —a—1 Y tcos ¢ -k
[l £ = (KE™*7") avec Jj, = 1+ "
2 . 2

A partir de la, on constate que

[o¢]
Jk _ taeftcos d)dt
k—oo  J4
et donc que la suite (J;) est bornée par une constante ne dépendant que de « et ¢.
En résumé

o —k
I (@ 9) (Kk™*1) avec J(a,¢) = sup / t* (1 + tczsgb) dt
1

2 k>|a|+4

(2)
[fe 'l <
3. Grand cercle : comme pour 1., en utilisant la majoration (3), on obtient :

A1 5o K@) (L) ™ (14 )
(2+mn)"

< K=
(T4t

4. En réunissant toutes les majorations trouvées, on obtient, pour k > || + 4,

J(O[, (b) 4 (2 =+ 77)a ka—i—l

Al < (KB |54 ==+




Par ailleurs, il existe une constante k; (dépendant uniquement de « et ), telle que,

pour k > ky,

(2+mn) Lot < q

(1+n)k B

Ainsi, on obtient finalement, pour tout k > ko, avec kg = max(kq, |a| + 4),

M]

™

el < (k) [5+

ce qui est le résultat cherché.

1.3 Opérations sur les développements

L’exemple de I'arbre binaire de recherche, sous le modéle de permutation aléa-
toire, nous a conduit a 'équation f(z) = (1 —2)72 [ #'(w)(1 — w)*dw. Dans I'ob-
jectif de déterminer le comportement asymptotique de f(z) au voisinage de z = 1,
il convient donc de s’intéresser aux effets de la dérivation et de 'intégration sur des
éléments singuliers du type (1 — z)?.

Théoréme 3 (Dérivation d’un développement singulier) Soit f une fonction
A-réguliere admettant un développement A-singulier, alors pour tout entier r > 0,
j; (z) est également A-réguliere et admet un développement calculable par dériva-
tion terme a terme :

dr ., il o, +1 o A—r
50 = (0 g 1 0 (1)

Démonstration:  La encore, la seule partie & démontrer est celle concernant le
terme d’erreur. De plus, par une récurrence immédiate, on peut se ramener au cas

r = 1. Soit donc g(z) = % ou f(z) = O (|1 — z[*). On a alors
f'(2)
(1-2)

f(2)

(1 — 2)A+t

g'(z) = < +A

qu’on peut reformuler ainsi :

fz)

1—=2

fl(2) =g ()1 -2)" - A

Par hypothése, au voisinage de 1, on a g(z) = O (1). Il nous faut donc démontrer
que ¢'(z) = O (|1 — z|7), au voisinage de 1, pour en déduire le théoréme.

Soit A = A(¢1,m) le domaine de régularité de f. Nous allons travailler dans un
domaine A(¢ + €,n), avec € > 0, ¢ > ¢ et n < ;. On fixe ¢ > 0 "petit" et on
restreint z au domaine A(¢ + ,1). A partir de la formule de Cauchy

9(2) = —— / glw) -2

20T w—z




F1G. 2 — Le contour v utilisé dans la démonstration du théoréme de dérivation

on en déduit, par dérivation,

1 dw
/ Z) = — w)——
76 = 55z [ 9955
De plus, on choisit comme contour « celui dessiné Figure 2 : v = v Uy U3 Uy,
avec

1
T o= %ﬂw—H=§k—mbww—lNZM
1
Yo :{wév—ﬂsw—lHM§1+mMQw—U=¢}
3 = {w/lw|=1+n, larg(w —1)| > ¢}
1
o :{wév—ﬂsw—lHM§1+mMQw—U=—M

Le choix ¢ > ¢; et n < n; nous garantit que le contour ~ est bien inclus dans le
domaine d’analyticité de g. Nous allons maintenant évaluer les contributions des
intégrales le long des différents chemins vy, ¥, v3, 74. Pour le petit cercle,

/%zo(l).o( 1 >.O(’1—2D20(|1_z‘1)

[1—zf?
/

Si nous posons |1 — z| = 0, les intégrales le long de 2 et 74 sont majorées, via des
considérations géométriques par :

T du _ B
[ ssmowh =00+
72 3

=01)=0(1—2")

10



La combinaison des différentes majorations nous améne a ¢'(z) = O (|1 — z|71), et
donc & la conclusion du théoréme.

Théoréme 4 (Intégration d’un développement singulier) Soit f une fonction
A-réguliere admettant un développement A-singulier, alors la fonction z — foz f(t)dt
est également A-réguliere. Supposons que pour tout n, o, # —1 et que A # —1.

- Si A < —1, alors le développement singulier de foz f(t)dt est donné par :

N

| s == 3" e o (-t
0

n=0

- Si A > —1, alors le développement singulier de foz f(t)dt est donné par :

2 N
_ n _ yantl _ LA+
/O f(t)dt = Zan+1(1 Z) + Lo+ O (J1 — 2[4

n=0

ot la constante d’intégration Lo vaut :

L= 3 g+ [ 00— X aa-oma

an<—1 an<—1

Démonstration:  Soit r(z) le terme d’erreur dans le développement de f(z) :

r(2) = f(z) = Y eall —2)™

n=0

Par hypotheése, il existe une constante K > 0 telle que pour tout z appartenant a
A,ona:|r(z)] < K|1—zA
1. Si A < —1, il suffit de démontrer que

/Ozr(t)dt —O(JL— 24

ou l'intégrale peut étre calculée sur n’importe quel chemin reliant 0 & z, a 'intérieur
du domaine d’analyticité de r. Nous choisissons le contour 7 = v; U 7, dessinée

Figure 3 .
Alors
/T(t)dt' < / T(t)dt' + / T(t)dt'
gl " 72
gK/ |1—t|Ads—|—K/ 11— t|*ds
1 Y2

=0 (|1 — Z|A+1)

Le résultat en O (|1 — z[*™) provient pour D'intégrale le long de v, d'un calcul
explicite ; pour l'intégrale le long de 75, ce résultat résulte de la majoration par la
longueur du contour 7», la valeur |1 —¢| étant fixe.

11



F1G. 3 — Le contour utilisé dans la démonstration du théoréme d’intégration.
2. Si A > —1 : nous posons f_(z) la “partie divergente” de f donnant lieu a des

problémes d’intégrabilité en 1 :

fG)= 3 gt — 2,

a;<—1

Nous effectuons alors la décomposition f = (f — f_)+ f_. On a:
c

/OZ f-(t)dt = —QZ

j<—1
dt, donc

/0 (- )0yt = / (f = f) @yt + / - e

Le premier terme est une constante, que nous retrouvons dans l’expression de L.

Le deuxiéme terme se décompose ainsi
cj N
(1 —2)t! +/ r(t)dt.
1

[ u-rma=- 3

Oéj>—1
Comme A > —1 le terme d’erreur est fini, et une intégration le long du segment
reliant 1 & z fournit le résultat [ r(t)dt = O (]1 — z|4).
1.4 Produit de Hadamard
Dans certains cas, comme celui du modéle de Catalan, que nous traiterons en
application, on peut étre amené a considérer des fonctions génératrices a coefficients
pondéres. Par exemple, plutot que de poser f(2) =) ., fn2", nous pouvons poser

f(z) = 50 Cnfn2", ot les C, sont les nombres de Catalan, des constantes connues.
f(z) se présente alors comme le produit de Hadamard des fonctions f et C' définie par

12



C(2) = 3,50 Cn2". Plus généralement, si a(z) = ), o an2" et b(2) = >, ooba2",
on définit le produit de Hadamard de a et b par :

= Z anby 2"

n>0

Il convient donc de regarder comment se comporte I’analyse de singularités par
passage au produit de Hadamard.

Proposition 1 Sia, b et a+b ne sont pas des entiers, alors le produit de Hadamard
(1 —2)20 (1 — 2)" admet un développement infini dans ’échelle des puissances
{0,1,2..}U{a+b+1,a+b+2,.. } de (1 — z). Précisément, au voisinage de 1,

( )(1 _ Z)a+b+1+k

ab a,b
(1—2)"0(1—=2)" Z)\ T o

k>0 k>0

avec les coefficients \ et p donnés par

\an _ LA +a+d) (-a)(=b)"

k F(1+a)l(1+b) (—a—b)*
@y _ T(=a=b—1) (1 +a)f(1+b)*
BT TN 2+at by

avec la notation ¥ = x(x +1) - (x + k —1).

Démonstration:  Ce résultat découle du développement :

a_q1, 70  (=o)(zatl) ,
(1—2) —1+Tz+Tz +

Il vient alors, en effectuant une multiplication terme & terme :
(1-2)*0(1-2)"=sF[-a,—b1;7]
ol o F} représente la fonction hypergéométrique de Gauss définie par

afl z N ala+1)B(B+1) 22

Fila, Bzl =1+ il
2Fila, 657 2] v 1! v(y+1) 2!

Mais alors, d’aprés la théorie des transformations de fonctions hypergéométriques
[4], nous savons, en général, que celles-ci peuvent étre développées au voisinage de
z = 1 via la transformation z +— 1 — 2. Dans le cas 7 = 1, nous avons en effet

L(l—a—5)
2 1[04757 ,Z] F(l—a)F(l—ﬁ)Q 1[a76aa+ﬁa Z]
Cla+p—1) o
T F )y B Pl a1 =62—a—031— 2]
Cette égalité nous fournit le développement donné dans la proposition, avec o« = —a
et = —b.

13



Proposition 2 (Composition des termes d’erreurs) Soit f et g deux fonctions
A-régulieres dans un domaine A(¢,n) telles que, pour z € A(p,n), f(z) = O (|1 — 2|%)
et g(z) = O (|1 — z|), avec a+b+ 1 < 0. Alors le produit de Hadamard f ® g est
régulier dans un domaine A', ot il vérifie

(f©g)(z) =0 (|1 —2|""*)
Démonstration:  Admise [2]
Nous pouvons préciser le développement de f ® g dans le cas a +b+ 1 > —1.
Proposition 3 Soit f et g deux fonctions A-réguliéres, telles que pour z € A, f(z

(2) =
O (|1 —z|") et g(z) = O (|11 — 2|"). Supposons également que k < a+b+1<k+1
pour un entier k > —1. Alors pour z € A/,

L(F @)D (1)1 = 2 40 (1 - 2[7+)

M»

(f©g) ,
J=0 ‘7

Démonstration: Soit 0 = 0, I’ operateur ~ et soit U Popérateur d’Euler z0. On
remarque que

W(fog)=0f)0og=f06y),
ce qui conduit a
I (fog =0 og

D’aprés le théoréme de dérivation d’un développement singulier, on sait que 9**1 f(2) =
@) (|1 — z\a_k_l). Donc, la proposition précédente s’applique :

(P (f@9)) (2) = O (|1 — 2z|*T*7F).

Par ailleurs, pour une fonction h dans 'image de ¥, on a

(7)) =Rt [ 00T

avec une certaine constante d’intégration F,. Il est alors possible de retrouver h =
f © g par intégrations successives, en utilisant le théoréme d’intégration d’un déve-
loppement singulier.

Par définition de k, on a —1 < a+b—k < 0. Des intégrations répétées montrent
alors

(f@g)(z) = P(2) + O (|1 = 2**"*")
ou P(z) est un polynome de degré k englobant les constantes d’intégration. Ce
polynome est donc entiérement déterminé par les (k + 1) premiers termes du déve-

loppement de Taylor de f ® g en 1, ce qui revient précisément a 1’énoncé de notre
théoréme.

Nous résumons maintenant les différents résultats obtenus concernant le produit
de Hadamard.
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Théoréme 5 (Composition de singularités) Soit f et g deux fonctions A-réquliéres
admettant les développements A-singuliers suviants :

f(2) =) en(l=2)"+0(1=2"),  g(z) =) du(l=2)" +0(1 - 2|")

Alors le produit de Hadamard f ® g est également A-régulier. De plus, il admet le
dévoppement singulier suivant :

FOg() = emd(1=2)" 0 (1=2)"]+ P(1=2)+0 (|1 - 2),
avec C' =1+ min{ag + B, A+ B} et P un polynome de degré inférieur a C.

1.5 Le modéle des arbres de Catalan

Nous allons traiter complétement le modele des arbres de Catalan, c’est-a-dire le
modeéle uniforme pour m = 2, pour voir la mise en application des principes évoqués
dans cette partie assez théorique.

Notre équation fondamentale (1) peut s’écrire ainsi :

Xn = XKn + Xn—l—Kn + tn

Or, dans le modéle de Catalan, P(K,, = k) = % avec C), = n%rl (2:), le n-iéme
nombre de Catalan représentant le nombre d’arbre binaires a n clés.
En effet, pour obtenir un arbre binaire a n clés (parmi les C), possibles), avec un
sous-arbre gauche a k clés, il faut choisir un arbre binaire (le sous-arbre gauche) a k
clés (donc Cj, choix possibles), et un arbre binaire (le sous-arbre droit) an —1 —k
clés (donc C),_1_j choix possibles).
On obtient alors, en conditionnant par K, :

n—1
CrChq_
fn:E[Xn] :tn+z%(fk+fn—l—k)

k=0 n
d’ont

n—1

Cofo=Cutn+ > Colrii(fi + fao1r)
k=0

n—1

=Cyty, +2 Z CrCrni—k fx
k=0

On introduit alors des fonctions génératrices pondérées par des coeflicients de nor-

malisation : N B
0(2) =) G f(2) =) faCn2",

n>0 n>0
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ce qui nous conduit a

o) =i(2) + 2:0()F(2), o C(2) =3 Cus" = (1 — VT= 1),

= 2z
Donc
= 1 z
f(z) = Vi (2)
_tHz) ©C(2) X _ n
=== ol t(z) = Ztnz

n>0

Nous pouvons maintenant établir le théoréme suivant :

Théoréme 6 Sous le modele de Catalan, les valeurs moyennes des cotts induits par
des suites-test du type t, = n“(a > 0) admettent des développements asympotiques

en puissances de n et de Inn. Les termes principaux sont résumés dans le tableau
suivant :

Suite-test () | Cott (f.)
P(O[ - l) atl a—1
n® (2 <a) 71“(04)2 nte +O<n 2)
1
3/2 2
n F(3/2>n + O (nlnn)
Pla—3) a1
n (3 <a<?d) F(a)2n+2 + 0O (n)
1
nl/? —nlnn + O (n)
VT
n® (0<a<3) K.n +0(1)

Démonstration:  Pour des raisons de simplicité, nous allons ramener la singu-
larité en z = 1. Ainsi :

Hz) @ C(5) = > nrfl (25) Cy

n=1
Par ailleurs, le développement asymptotique des nombres de Catalan est connu :

1 9
47C ~ == (1= — 4. ).
ﬁn 8n+

En multipliant par n®, on trouve ainsi un équivalent asymptotique au n-iéme co-
efficient de Taylor. De la, on cherche a en déduire un équivalent asymptotique, au
voisinage de 1, de t(z) © C(%). Or

SRS M (IS IIES P

N[ =
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Nous pouvons donc trouver une fonction H(z) dont les coefficients correspondent
asyptotiquement & ceux de t(z) ® C(3) :

H(z) = e —3) 5)(1 —2)7 3 (T e(l—2) + el —2)2+--),

NZS
pour une suite (¢,) calculable explicitement. Le développement singulier de t(z) ®
C(%) est alors la somme de H(2) et d’une série P(z) = > 1% p,(1 — 2)"
Le développement singulier de f(%) s’obtient finalement en divisant par /1 — z
et nous obtenons donc :

Aprés avoir divisé par 4 "C),, on trouve enfin :

_1 /"
anan% 1+2 4.0 ) 4R,
INEY! n

avec un terme R,, provenant de la série P(z) de la forme

d
Rnwd,1n+do+ﬁ+~~

Cette derniére estimation nous permet de remplir le tableau donné dans le théoréme,

sous réserve que « ne soit pas de la forme g, avec k entier. De plus, si 0 < a < %,

la série définissant f(i) converge en z = 1; le terme dominant pour f(i) est alors
() ~ /2 K, X 1 /2n
, soit <—> ~ , avec K, = — .
V1—2 / 4 V1—z ;n+14n n
k

Lorsque « est de la forme 3, avec k entier, des termes logarithmiques vont appa-

raitre, du fait de la présence de puissances entiéres négatives de n dans les coefficients

de t(%), mais le raisonnement reste le méme. Par exemple, si a = 0.5, on a :

™n

n

et on a alors

or
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2 Etude des arbres m-aires de recherche

Dans cette section, nous allons nous concentrer sur le modéle de permutation
aléatoire. Dans un premier temps, nous nous intéressons au cas des arbres binaires de
recherche(m = 2), pour déterminer le comportement asymptotique de f, = E[ X, ].
Puis, nous considérerons m quelconque, ce qui nous conduira a des équivalents
asymptotiques moins précis, mais nous permettra de trouver, le cas échéant, des
distributions limites pour f(7).

2.1 Développement asymptotique de f, = E[ X, ]

Théoréme 7 Sous le modele de permutation aléatoire, les valeurs moyennes des
colts induits par des suites-test du type t, = n*(a > 0) admettent des dévelop-
pements asympotiques en puissances de n et de Inn. Les termes principauzr sont
résumés dans le tableau suivant :

Suite-test () | Cott (fn)
n® (2 <a) Z i_ 1no‘ + O (n*1h)
n? 3n? —6nlnn+ (10— 6y)n+ O (Inn)
ne (1<a<?2) ziino‘ + Kon+ O (n*1)
n 2nlnn +2(’y—1)n+21nn+27+1+0(%)
n® (0<a<l) K.n +Zt1na+Ka+0(1)

Démonstration:  On rappelle I’équation établie au début de la premieére partie :
en posant f(z) =" o fu2" et t(z) =), ~tn2"™, on a la relation :

FE)= (=27 [ ¢ - wfde

On remarque d’abord que si t, = n*, avec k € N, I'intégration peut étre menée

explicitement, étant donné que t(z) est alors une fraction rationnelle.

Sinon, il suffit d’examiner sur les éléments singuliers du type (1 — 2)? les ef-
fets de la dérivation, de la multiplication par (1 — 2)?, de l'intégration, puis de la
multiplication par (1 — z)72.

On a alors la chaine suivante :

d _7)2
c(l —2)° 2 —cf(1 — 2)°7! gl —cfB(1 — 2)Pt?

Pour continuer la chaine, on va supposer que § + 1 # —1 (sinon, un terme
logarithmique apparait).

—cB(1 — 2)P*! N ci(l — z)P+? X(I_'Z);Q ci(l —2)?

B+ 2
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—6-1
Ainsi, un tel élément apporte a f, une contribution ¢ g (n g ), qui est
g+2\ —f—-1
5
3+2T(-3)

similaire). En particulier si t,, = n® (a > 1), on sait que t(z) ~ I'(a+1)(1 — 2
au voisinage de 1, et donc on peut reprendre la chaine ci-dessus avec ¢ = I'(av 4 1)
et 3 = —a — 1. Ces étapes se résument alors ainsi :

équivalent a c (le traitement de termes logarithmiques est tout a fait
)—04—1
9

1 1
a+ (1_Z)fa71:>ana+ na

= n" = () ~ Dla1)(1-2) " = f(2) ~ Dlat ) —— a—1

Dans I’étape d’intégration, nous avons mis de coté le calcul des constantes. C’est
le deuxiéme cas du Théoréme 4 qui nous fournit leur forme :

ou f_ représente la somme des éléments singuliers de f avec un exposant strictement
inférieur & —1. Cette constante étant ensuite multipliée par (1 — 2)72, le terme
résultant dans le développement de f,, est donc K[t] - (n + 1).

Dans le cas ou t,, croit moins vite que n, alors la partie divergente est absente et
alors :

L 2 — t,
K[t]:/o #(w)(1 - w) dw:2;(n+1)(n+2).

Ces considérations nous incitent a définir les constantes suivantes, qui achévent le
remplissage du tableau :

+o00 a

n
K,=2 ) <1
;(nJrl)(n—i—Z) e

et

a+1)( ) .
_22 T Dnt2) sil <a<?2.

2.2 Théorémes de transfert

Afin de déterminer des distributions limites, nous allons utiliser la méthode des
moments. Pour cela, nous devons donc chercher des équivalents asymptotiques pour
les moments de notre fonctionnelle additive f(7).

Sous le modéle de permutation aléatoire, nous admettrons que la loi jointe de
la taille des sous-arbres (|L1|,...,|Ly,|) est uniforme sur les (. " )m-uplets d’entiers
positifs ayant pour somme n—(m—1). Posons i, (k) = E [ XF | (avec X,, = f(T) pour
|T| = n) et introduisons les notations ZJ. pour désigner la somme sur les m-uplets
(j1,---,Jm) ayant pour somme n — (m — 1) et Y, la somme sur les (m + 1)-uplets
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(k1, ..., km+1) d’entiers positifs ayant pour somme k. Alors, en notant & une somme
de variables indépendantes, on a :

1
Mn(k) =K [XS] =K [E [XS||L1|7a|Lm”] = WZE[XH D @ij_"tn]k
m—1 j
:LZZ ' g (k) - - g, (R )L+
( nl) kl ok k 4 J1 Im n
m— j K ) s 'vmyy vy

avec

= () Ty ) )

~~~7kmakm+1

en notant Y, " la méme somme que Y, avec la condition supplémentaire que k; < k
pour 2 = 1,...,m. Nous avons ainsi établi une relation de récurrence linéaire de la
méme forme pour tous les moments de X,,, la seule différence provenant du terme
rn(k). Notons d’ailleurs que r,(1) = ¢, c’est-a-dire la suite-test.

Proposition 4 Sous le modéle de permutation aléatoire, les moments (a,) d’une
fonctionnelle additive vérifient la récurrence suivante

n—(m—1)
an:% Z a; + by, n>m-—1 (4)
m—1 7=0

avec les conditions initiales a; = b;, pour 0 < j < m — 2.

Notre démarche, présentée en introduction, consiste maintenant & considérer les
fonctions génératrices A(z) = ), oqan2" et B(2) = > -, b,2", afin d’en déduire le
comportement asymptotique de la suite (a,). En fait, la récurrence liant a,, et b, se
transfére en 1’égalité suivante :

Am=D(2) = B (2) +ml(1 — 2)" M D A(2)
Le théoreme ci-dessous nous explicite la solution de cette équation.

Théoréme 8 (Théoréme de transfert exact) Soit A et B les fonctions généra-
trices des suites (ay) et (by,). Soit

m—2 0
B(z)=B(z)— Y bz = Y be" (5)
7=0 n=m—1
Alors
m—1 m—1 s 2
A — 1— —Aj (1—2) J B(m—l) 1— ,\j+m_2d 6
@=2 o=+ I | Bren-gta @
m—1 m—1
~ (1—2)"% % N
=) ¢l=2)V+B(z)+ml ) ~——~~— | BEQL-OV'd¢ (7)
= = ) /0

20



ou v désigne le polynéme caractéristique

PA) = A"l = XA+ 1) (A +m—2) —

ayant pour racines \y = 2, g, ..., A\p_1, ordonnées suivant les parties réelles dé-
croissantes. Dans ’équation (7), les coefficients ¢1, ¢, ..., Cm_1 peuvent étre écrits
explicitement

kz /\k—l—l

Démonstration:  Nous ne démontrons pas ici I'égalité (6) : celle-ci fait appel a
la résolution d’équations différentielles eulériennes et dépasse largement le cadre de
notre propos. Par contre, pour démontrer ’égalité entre (6) et (7), nous remarquons
que dans (6), B peut étre remplacé par B. Nous utilisons alors plusieurs intégrations
par parties et 'ldentité 2, produite en annexe. En notant

]

AZ)=A() =Y (1 —2)Y,

nous trouvons apreés m — 2 intégrations par parties

m—1
(1_Z>7)\j Z’\/ A

= ——(\; —2)--- (N +1 B 1—0)YdE.

> G =D 1) [ Bl -oae
Mais —

_Agnf () +m!l - oml

(g tm=2)o- (4 41) = % = HALEIE T

et donc

- Z 5 <>A ; /0Z§’<5><1 — oM de.

Nous obtenons alors (7) en réalisant encore une intégration par parties, et en utilisant
I'Identité 1 avec A = 0.

Théoréme 9 (Théoréme de transfert asymptotique)

- Si
0o bn
b, = o(n) et % CERCES) converge, (8)
alors K
_ 1
a, = o T + o(n) 9)
ot

(10)

Mg
b
_l’_
-
k)
_l’_
\‘}3
o
&
I
g
<L | =
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- Si b, = Ks(n+ 1) + hy, ot (hy,) vérifie (8) (en remplagant b, par h,), alors

K, 3
H,
[Z A K —

> h; H,, —1 HY —1
Kj = ————+ K = — 14—
’ Z(]+1)(]+2) 2( 2 Q(Hm—1)>

~ Si b, = Kyn® + o(n") avec v > 1, alors

n+ o(n) (11)

Ap =

avec

Ky

_ m!I'(v+1)
1 I'(v+m)

n* 4+ o(n") (12)

Ay =

Pour démontrer ce théoréme, nous aurons besoin de plusieurs lemmes. Ceux-ci
nous permettrons en effet de controler les différents termes intervenant dans 1'ex-
pression de A(z) donnée par le théoreme de transfert exact 8.

Lemme 1 Soit Y(z) =Y yn2" avec yo = 0. Alors,

n—1 n

YieC [z ((1 —2)™ /02(1 - 5)“Y(§)d5) => k?f - 11 (1 + %) .

k=0 j=k+2
(13)

Démonstration:  La fonction W(z) = (1 —2)"* [[(1—&) 'Y (&) d€ est Punique
solution vérifiant W (0) = 0, & I’équation différentielle

W'(z) = A1 —2)""W(z) + (1 — 2)7'Y(2).

Par conséquent w,, = [2"|W (z), n > 0, vérifie wy = 0 et

n—1 n—1
nwn:)\g wk+§ Yk, n > 1.
k=0 k=0
D’ou
n—1 n—1
A 1
wn:—g wk+—g Yk, n>1.
n n
k=0 k=0
Mais cette récurrence se résout aisément :

nw, — (n— Dwp1 = M1 + Yn1,

A—1 e
wn:wn—1<]—+ n )+yn1a

soit

ce qui, en itérant, nous démontre le lemme.
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Notons d’ores et déja que le produit dans l'expression (13) peut étre précisé ,
grace a la formule de Stirling :

n

1 <1+A;1): F(A+n) TE+k) _ P 11+ 0 (n7Y)] 18

e Fk+X+1)TA+n) (E+DMO14+0(k+1)71)

Par ailleurs, dans le cas A = 2, le Lemme 1 se résume a :

n—1

(-0 [a-ov©w) =Y iy 1)

Lemme 2
~ Si Re(X) <2 et Y(z) = 0" yn2" vérifie yo =0 et y,, = o(n), alors

1= 07 -9 viga) = o)

~ Soit B défini en (5), si la condition (8) est vérifié, alors

2" ((1 = B - £)d£> - ngj M—]H) +o(n)
Démonstration:  Si Re()\) < 2,
=) (a-a7 [[a-oviga) - e H (1+24)
~0 (:_1 k'*?jfu exp ((m -l r ))

Si A = 2, reprenons ’égalité (15), en remplagant Y par B , et en se souvenant
que by =010 < k< m —2 et by = b, sinon.
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Alors

(007 [a-oBei) = ¥ gty
n—1 b
- ”k%:_l k+ 1)IEk 5 T o)

+00 bk too bk
! ;1m_n§m+o(n)

o3 b
n Z WM—TLO(l)—FO(TL)

k=m—1

+o0o
by,
=n ———— +o(n
kg_l (k+1)(k+2) ()
Lemme 3 Soit (b,) et (V),) deuz suites telles que

|bn| < b, pour tout n >0
alors les suites correspondantes (ay,) et (al,) dans (4) vérifient

la,| < al, pour tout n >0

Démonstration:  Ce résultat se démontre par une récurrence immeédiate.
Démonstration: |[du Théoréme 9|
Pour le cas b, = o(n), il suffit de repartir de I’équation (7), et de voir que le coefficient

dominant dans le développement de a,, est celui apporté par les termes en (1—2z) =1 =
(1—2)72. On a donc :

m! o= bk
a, = cin+o(n) 4+ o(n) + ) X (n kg_l CESNED)] + 0(n)> +o(n),

m—2 m
1 by , 1
_ 3 2) = ml(Hy — 1) (o0 Hy =Y =), L
avec ¢, Hm—lkzo(k+1)(k+2)etw() m!(H,, — 1) (ou H,, i:1i> e

premier point est donc acquis.

Remarque 1 En fait, les termes (1 — 2)™* engendrent des coefficients de Taylor
de Uordre de n™ 1. Il est donc normal que l’ensemble soit controlé par le terme
correspondant a Ay = 2. Cela étant, le terme d’erreur peut étre précisé si on dispose
d’informations sur Ay (la racine de v ayant la plus grande partie réelle aprés ).
Par exemple, si 2 < m < 26, on sait qu’alors as = Ry < % et donc le résultat
précédent peut étre amélioré ainsi :

Si2<m <26 etb, =o0(y/n) alors

n+o(v/n) (16)
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Pour le cas b, = K3(n+1)+h,, on considére d’abord le cas particulier b, = n+1,
soit B(z) = (1—2)72, et donc BV (z) = m!(1—2)~ "V, En reportant cette égalité
dans I’équation (6), on obtient :

m—1

— 1
— (2 )Y (N)

J

o [0 = 2 log (= 2)7)]+olw).

a, = (n+1) |1 + m!

Mais alors, d’aprés les Identités 3 et 4 énoncées en annexe (avec dans ce cas précis
CcT = 1) :

1] B —1 1

1 1 HY —1
— H, + |- — .
o= s T g1 e, — e | W)

Ceci compleéte la démonstration du deuxiéme point pour b, = n + 1, le cas général
s’en déduit grace au premier point, en utilisant le principe de superposition.

Pour le dernier point, on suppose d’abord que b, = (v + 1)"/n! ~ n”/T'(v + 1)

c’est-a-dire B(z) = (1 — 2)~@*D et donc BV (2) = (v + 1) (1 — 2)~+™) En
reportant cette égalité dans I'équation (6), et en utilisant I'ldentité 1 avec A = v+1,

)™ [ Tw+1)]""
ainsi que 1'égalité (v +_) = 11— w , on obtient :
(v4+1)m=t—ml | I'(v+m)
m!T(v+1)]""
Alz)= |1 — ———= 1—2)"C) L O(1 — 2| 72).
(%) o] (=27 oL =)

Mais nous savons par ailleurs que [2"](1 — 2)~@*1) ~ n?/T'(v + 1), et ceci achéve
donc I'étude du cas particulier.

Pour compléter le cas général, il suffit de montrer que si b, = o(n"), pour v > 1,
alors a,, = o(n"). Pour cela, soit ¢ > 0; alors il existe une suite (b/,) telle que |b,| < ¥/,
pour tout n et b, = e(v + 1)"/n! pour n suffisamment grand. On a alors, d’aprés
I’étude du cas particulier :

T 1]t
ot m -]

Et donc, d’aprés le Lemme 3 :

lim sup |a,|n~" < &’;
n

et puisque ¢ (et donc ¢’) sont arbitraires, ceci achéve le cas général.
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2.3 Distribution limite de X,

2.3.1 Normalité asymptotique pour des fonctions-test "faibles"

Théoréme 10 (TCL1 pour des fonctions-test "faibles")
Si2 <m < 26 et la suite-test (t,) vérifie

(a)t, = o(v/n) et Zn max -~ < oo (17)

n5<k<n
n>0

pour une certaine valeur 6 €]0; 1, alors lespérance pu, et la variance o, de la fonc-
tionnelle additive correspondante X,, vérifient respectivement

o = e o(v/) = g+ of /) (13)

avec Ky défini en (10), et

2 2 < "y
0, =0n+o(n), ou o° = , , 19
() Hm—lg(j+1)(1+2) (19)
avec la suite (r,) définie parr; =0 510 <j<m —2 et
1
P =y Dt gy e g = ) (20)
(m—l) j
De plus,
Xn — pin L 2
—_— 0
Vi o N0
Démonstration:

Nous allons démontrer la convergence en loi par la méthode des moments. Posons

—~ __ ~k
X=X, —pn+1), u,(k) =E [Xn } et montrons par récurrence sur k > 1 que

fin(2k) ~ (22;2!! o n* (21)
fn(2k = 1) = o(n*~(/) (22)

On observe d’abord que les équations (18) et (19) rendent les équations précédentes
vraies pour k = 1.

1. Pour démontrer (18), il faut se rappeler que la suite des espérances (u,) des
variables (X,,) vérifie la relation de récurrence (4) avec b, remplacé par t,, et donc
que les fonctions génératrices A(z) et B(z) des suites (u,) et (t,) vérifient le théoréme
de transfert exact . On a alors le résultat sur u, comme application directe de la
Remarque 1.

2. (19) est une simple application du théoréme de transfert asymptotique ; il suffit
de vérifier que o,, vérifie I'équation de récurrence (4), avec b,, remplacé par r, (ceci
s’obtient en passant par la variance conditionnelle) puis que la suite (r,,) vérifie les
hypothéses (8).

26



Lemme 4 Sous les hypothéses du Théoréme Central Limite 1, la suite (r,) vérifie
les hypothéses (8) du théoreme de transfert asymptotique.

Démonstration:  Comme i, = p, — p(n + 1) (avec la notation i, pour i,(1)),
on peut réecrire 1, sous la forme suivante :

1 ~ ~ ~
Tn:(n)Z[fn+uj1+"'+Mjm—Mn]2a nzm-=—1
m—1 j

avec [i, = o(y/n), d’aprés (18). Nous allons maintenant utiliser le résultat classique
suivant : pour tous réels &1, ..., &,

[Z &] <k & (23)

Appliqué a r,, cela donne

—(m-1) .
T 9 m n—1—7\-
pstere sy B (5

et ceci établit la premiére des deux conditions (8).
Par ailleurs, au vu de cette inégalité, il suffit, pour établir la sommabilité de r,, /n?,
d’établir celle de 2 /n%. En effet, une conséquence immédiate de (17) (hypothéses
2

t
du TCL1) est que Z —7; < +00. De plus, nous disposons de I’estimation suivante :
n

n>0
n=m—1 (mril) 7=0 m_2 ’ n= ]+m 1”2(m7i1>
-1 Z >
n=j+m—1
i
Jj>0 J

Pour établir la sommabilité de 12 /n?, il faut remonter aux deux premiers lemmes
intervenant dans la démonstration du théoréeme de transfert asymptotique, et no-
tamment a I’équation (14), afin d’obtenir un développement de i, :

~n — O ag— 1 t _
# (™) + Hm ; k1) k+2)
m—1 n—1
+ O (najl |tk‘ )
= 0 (k+ 1)«

avec oj = R\, (en particulier ap < 3/2, puisque m < 26) et th=trsik>m—1
et 0 sinon. En se souvenant de l'inégalité classique (23), il suffit donc d’étblir la
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sommabilité du carré de chacun des quatre termes, divisé par n?. Pour le premier
terme, le résultat est immeédiat ; pour le deuxiéme, nous avons déja énoncé le résultat
comme conséquence des hypothéses (17) du TCL1. Pour le troisiéme, nous utilisons
I'inégalité de Cauchy-Schwarz :

— t, i 1| k
[kz(k+1)(k+2) = _[Z\/_k—i—l k+2) 7]
o

),

+oo
-1/2 Z k,—5/2tz> ’
k=n

et donc
+00 ? 2
Z Z k _ Zn_1/2 Z L= 5/2t2>
n>0 L;n (k + 1)<k + 2) <n>0
2
= 0 (Z k—5/2t§k:1/2> =0 (Z k—’;) < 400
k k>0

Remarquons ici que si m = 2 la démonstration est finie (le quatriéme terme est
nul).
Pour ce dernier, dans le cas général, il suffit (toujours d’aprés (23)) d’établir la

sommahbilité de )
1
n2r—4 _k

k=1

pour tout réel p < 3/2. Pour ceci, nous séparons la somme en Zk<n5 et Zn5<k<n et
faisons une fois de plus appel a I'inégalité (23).

Pour la somme ), _ s nous utilisons seulement ¢, = O <\/E) et nous remarquons

que :
2

—0 <n2pf4 (n5>3*2p> — 0"

ZO E(1/2)- p

k<nf

avec T < —1.
Pour la somme ) _;_,_, nous utilisons & nouveau l'inégalité de Cauchy-Schwarz :

2 2

et | 30 el | _ p2eipt | 3 KU |
| T WG 2

nd<k<n nd<k<n
k,(l/Z)fp t2 t2
= O|n! -~ 21 =0(n"! max £
n5<zk<n nB/2)-r L nd<k<n k ’

qui est sommable d’aprés I'hypothése (17). Ceci achéve la démonstration de notre
lemme.
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Démonstration: |fin de la démonstration du Théoréme 9|
3. De la méme maniére que nous avions établi ’équation de récurrence fondamentale
(4), on établit que la suite (u,(k)) vérifie :

(k) = f G LR

avec

g (k) = g (ki) (24)

_ * k km+1

rn(k) ; (kla BRI kma karl)tn .
ou Y, " désigne la méme somme que Y, avec la condition supplémentaire que
k; < k pour i € {1,...,m}. On remarque d’ailleurs que 1'équation vérifiée par
tn (k) est de la forme (4). Nous pourrons donc appliquer le théoréme de transfert
asymptotique aprés avoir évalué r,(k) asymptotiquement. Soit donc k > 2 fixé et
supposons (21) — (22) établis pour tous les entiers inférieurs strictements a k. On
calcule alors 7,(2k) en isolant la somme sur tous les m-uples (ky,...,k,,) d’entiers
positifs, tous inférieurs strictement a k, et de somme k, notée Y, ™. Ainsi,

) = ofn) + 3 (%’ > %m) (L) S i (2h1) -+ o, (26
- 1
N +Z (le,.. 2k>(m

-1

(2Kk)! = k 1 a\" (™
_ k 2k, k I RN Al

(2k1)' 2k1 - k1 (2k ) 2km + km
)Z%klla AT

Mais
1 . k1 . km
Z (j_1> oo (']_m> _ / xlfl oo xl:n"rifll(l — xl —_— e e xmil)kmdxl oo dxmil
s e\n) ) =
Cky+1)---T(ky + 1) 1
= (m—1)! = k krm—1
L(k+m) (k:1 km) ( Jrrn—l )

]m 1/Sm e, < 1}, Puisque le nombre de termes

avec U = {(z1,...,Tpm— 1) € [0,
st ("1™1) —m, nous avons donc :

intervenant dans Y " e

(2k)! 2k _k (Hm_l) —-m

m—1

N G

m—1

2k)! m!I'(k +1

rn(2k) = + o(n")

On démontre de méme que 7,,(2k — 1) = o(n*~(/2)), ce qui achéve la démonstra-
tion.

Le théoréme suivant examine le cas extréme ou ¢, ~ y/n, ou bien t,, ~ y/nL(n)
avec L une fonction & variation lente.
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Théoréme 11 (TCL2 pour des fonctions-test "faibles")
Si2 <m <26 et la suite-test (t,,) vérifie

tn ~ +/nL(n)

ou L est une fonction a variation lente, alors l’espérance p, de la fonctionnelle
additive correspondante X, vérifie

ViL(n) + o(v/nL(n)) (25)

avec Ky défini en (10).
St Zbo# < 400, alors la variance o

s*(n) = o’n.

2
n

vérifie (19)-(20), et on pose alors

- L2(k) _ 2 200 — 2 LK) - o
SiY o~ = 100, alors op ~ s°(n) = o*n Y, =57, ol nous définissons

De plus, dans les deux cas

Xp—pn ¢
———— — N(0,1)
s(n) n—-+400
Démonstration:  Cette démonstration est assez similaire a la précédente, mais
ameéne a énoncer diverses variantes des lemmes rencontrés jusque-ici, et donc a alour-
dir le propos. Nous 'admettrons donc.

Remarque 2 Le deuxieme cas de ce théoréeme a le mérite de nous fournir explici-

9
tement la variance limite : dans le cas m = 2, celle-ci est de §7T — 14.

Remarque 3 Dans le cas m > 27, la recherche des coefficients de Taylor, a partir
du théoreme de transfert, nous amene a la conclusion négative qu’en général, des
phénomeénes de périodicité apparaissent pour fi, et donc qu’il n’y a pas de distribu-
tion limite naturelle pour une quelconque normalisation de X,,. Chern & Hwang [1]
fournissent des exemples de telles situations.

2.3.2 Fonctions-test modérées et élevées

Ces deux derniers théorémes nous affirment 'existence d’une distribution limite
dans le cas t, ~ n? avec 3 > 0.5. Plus précisément, nous allons voir que si cette
distribution existe pour n’importe quelle valeur de m si 8 > 1, elle n’existe (en
général) que pour m inférieur & un certain entier mq si 0.5 < § < 1.

Théoréme 12 Si la suite-test (t,) vérifie

tn ~nPL(n) avec 0.5 < B <1
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avec L une fonction a variation lente et ag < 14 (3, alors ’espérance de la fonction-
nelle additive X,, sur les arbres m-aires de recherche, sous le modéle de permutation
aléatoire, vérifie

(14 5)m_1_nﬁ n
@+ p

ou K, est défini en (10). De plus,

o(n”L(n)),  p=

i = i — —
m

Xn_,un L

_— Y,
nPL(n) n:w A

ot Y3 est une variable aléatoire non gaussienne, et uniquement déterminée par 3.

Remarque 4 Nous avons déja vu que ag = R(A2) < % si m < 26. Mais, par

ailleurs, nous savons que ay augmente avec m. Ainsi, pour une valeur f €]1/2;1]

fixée, la condition an < 14 ( équivaut a m < mg pour un certain mg > 26.
Démonstration:  Nous reprenons les notations )~(n = X, —pun+1), g,

fn — p(n+1) et p,(k) =E [)?H Nous savons alors que :

/\

/jn = O( @ 1)+t -

Hm ; k+1)( k;+2)

Y ( 1—2)7% /0 By - &)Afldg)

Nous obtenons alors le terme en n®L(n) dans le développement de ji, grace aux
Lemmes 1 et 2 et aux Identités 1 et 3 (cf annexes) :

- 1 a @+t
: (1= B3)(Hn 'Z (A+8)=2)'(N) =1+ )™ !

Pour établir la convergence en loi, nous allons montrer par récurrence sur k que
fi, (k) vérifie, pour une certaine suite (gx),

fin (k) = gin* LF(n) + o(n*P L*(n)). (26)
L’affirmation est vraie pour k = 1 avec

1+, mIE+1)\
—(1+5)m_(1 F(ﬁ+m))

31



On suppose donc 'égalité vraie pour tout entier strictement inférieur a k, et on
reprend l'expression (24) de r,(k) :

ra(k) = o(n*"L¥(n))

5 () HO

"'7kmakm+1

9k GLGO) -+ G (G2 L(jim) )

X
~—

S| =
N—
-1

* Z* (kl, . )(”ﬂL(“))kal © Gk

"'7kmakm+1

() (G R

m—

II;2, D)
F(Z?; ;)

Loy (ﬂ)klﬁ... (j_m)kmﬁ LG L Gim) o DBk 41, ko B41).

() 5 LR Hn(n)

Mais, en définissant B(zy,- - , ) = , on peut démontrer que

n n

et donc
ra(k) = o(n* L*(n))
+ nkﬁLk(n)(m —1)! Z* (kl,

k

k

SR kma karl

En utilisant le troisiéme point du théoréme de transfert asymptotique 9 (légérement
modifié par la présence de L(n)) avec v = kf3, nous obtenons :

fin(k) = o(n"’L*(n))

N — k _
e I Ui o go Bk B+1, .. ko B+1).
T e 2 R R L

Donc, en définissant récursivement g par

m—1)! * k
gk:(T(kﬂ)H) (k k )g’“”'g’“’”B(klﬁH"”’kmM1)’
1= Taarm & Voo fmi

avec go = 1, nous constatons que 1'égalité (26) est encore vraie au rang k. Nous
admettrons ce dernier lemme, trés technique :

Lemme 5 Les réels g, sont les moments d’une unique distribution.
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Notons cette distribution Y3, alors par la méthode des moments, on peut affirmer

que

Xn — pHn L Y
_— —) .
nﬁL(n) n—+0o00 A

Remarque 5 Sans donner plus d’explications sur son origine, Kapur [5] introduit
une variable Y définie par

YéZSij—I—l, pour G6>050#1

j=1
ou les (Y;) sont des copies indépendantes de Y et ot (Sy,...,Sy) est uniformément
réparti sur le (m — 1)-simpleze : {(s1,...,sm/s; > 0et 37", s; = 1}. 1l démontre

alors que cette variable Y est unique, puis que ses moments sont précisément les
moments g, du lemme précédent. Par conséquent, la distribution de cette variable Y
est la distribution limite de notre théoreme.

Remarque 6 Comme dans le cas des suites-test faibles, si ag > 1+ [ (donc si
m > my), on arrive (en général) a la conclusion négative que des phénomeénes de
périodicité apparaissent pour [i,.

On démontre de maniére tout a fait semblable le théoréme suivant, pour des
suites-test “élevées”.

Théoréme 13 Si la suite-test (t,) vérifie
tn ~nPL(n) avec §>1

avec L une fonction a variation lente, alors la fonctionnelle additive X,, sur les
arbres m-aires de recherche, sous le modéle de permutation aléatoire, vérifie

Xn L
— Y,
nﬁL(n) n—-+o00 p

ot Y est une variable aléatoire non gaussienne, et uniquement déterminée par 3.
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2.4 Simulations dans le cas m = 2

o0 -
w -
o>
=
2w -
O
(a]
o -
o — -

-0.2 -0.1 0.0 0.1 0.2

N = 6000 Bandwidth = 0.007937

X, —
Densité de =2 H" pour n = 10000

vn

Dans cet exemple, nous avons cherché a illustre le théoréme central limite 10.
Pour cela, nous avons simulé des arbres binaires de recherche a 10000 clés a partir
de permutations aléatoires (suivant un modele uniforme) de {1,2,...,10000}. Nous
avons alors calculé explicitement, pour chaque arbre, la valeur de la fonctionnelle

additive correspondante, dans le cas t, = n%!. Sur un échantillon de 6000 tirages,
X, — un . . , )
nous pouvons constater la convergence de Tvers la loi normale, ici représentée
n

en pointillés. Par ailleurs, ’écart constaté entre la moyenne de % et la moyenne

nulle de la normale centrée est de 0.02 précisément. Ce résultat est a rapprocher du
développement asymptotique proposé dans le Théoréme 7. En effet

1 0.1+1 o1 no1
10000”" + 2 ~ —0.0193
v/10000 (0.1—1 RZZO (n+1)(n+2)
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densité de X_n normalisée pour n=10000 et t_n=n”"0.5

1.2

1.0

Density
0.6
|

0.2

0.0
|

| | | | | |
-2.0 -1.5 -1.0 -0.5 0.0 0.5

N = 10000 Bandwidth = 0.0471

Cet exemple illustre le théoréme central limite 11. Il correspond au cas limite
t, = /n, pour lequel nous avons encore convergence vers une distribution gaus-
sienne.

X, — un
\/ > i %
de la loi normale (non centrée, mais de moyenne -1) de variance 97 /2 — 14. Nous
avons préféré décaler la gaussienne pour pouvoir comparer le plus justement possible
les courbes. L’échantillon simulé est de taille 10000 et est calculé pour des arbres
de taille 10000. Comme dans ’exemple précédent, il est intéressant de regarder les
écarts a la moyenne limite, théoriquement nulle. En effet, la moyenne pour 1’échan-
tillon simulé est de —0.942 (arrondi & 1073). Or, en appliquant le développement
proposé par I’équation (25), nous avons le résultat :

En ligne continue est représentée la densité de , et en pointillés la densité

1 0.5+1
10000%% | ~ —0.959
v/10000 (0.5 -1 ) ’

Il est a noter que dans ce théoréme limite, la vitesse de convergence n’est pas en

v/n, mais en vVnlnn.
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densité de X_n normalisée pour n=10000 et t_n=n”0.75

0.6

Density
0.2 0.4 0.5

0.1

0.0

-9 -8 -7 -6 -5 4 -3

N =10000 Bandwidth = 0.09906

Ce troisiéme exemple illustre le Théoréme 12, c’est-a-dire le cas ot t,, ~ n®, pour

Xp, — un
0.5 < 3 <1 (ici 8 = 0.75). La distribution limite de —- ﬂ,u
n,
n’étant définie que par ses moments, il est trés difficile d’obtenir une représentation
correcte de sa densité théorique. La méthode de développement sur une base de
polynomes de Legendre ameéne a des résultats trés peu exploitables, et en tout cas
bien plus mauvais que la densité obtenue pour un échantillon de taille 10000. On

peut ainsi se satisfaire d’'une moyenne estimée de —6.99 (a4 comparer & une moyenne

, dans ce cas de figure,

théorique pour la variable Yj 75 valant g; = —7) et d’une variance estimée de 0.519
(& comparer avec une variance théorique valant g, — g7 ~ 0.540).
Xn — pn

Par ailleurs, en posant 7, = , et en regardant les moments centrés

B
n

d’ordre impair de Z,,, on peut facilement constater que Z, n’est pas gaussienne. En
effet, les moments centrés d’ordre 3,5 et 7 de Z,, valent 0.23,1.28 et 8.33, alors qu’ils

devraient étre nuls si Z,, suivait une loi normale.
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densité de X_n normalisée pour n=10000 et t_n=n~2

©Q _|
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© _|
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o | _ _
o

N =9000 Bandwidth = 0.07939

Ce dernier exemple illustre le Théoréme 13, c’est-a-dire le cas ou t,, ~ n”, pour

Xn
B > 1. Dans ce cas de figure, la densité de la distribution limite Y3 de —5 Dbose
n

le méme probléme de représentation que précédemment. Néanmoins, 1a encore, on
peut se satisfaire de la moyenne de 1’échantillon (dont la densité simulée est en ligne
continue) valant 2.998 (& comparer & la valeur théorique g = 3), et de sa variance

0.321 (& comparer avec une variance théorique de gy — g° = g) La loi normale de

1
moyenne 3 et de variance —, ici dessinée en pointillés, est la pour se convaincre du

caractére non-gaussien de la distribution limite.
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Perspectives et conclusions

Il est rassurant de constater que nous retrouvons, via des outils totalement dif-
férents, des résulats bien connus sur le comportement d’algorithme récursif, par
exemple le cas du Quicksort [6] (correspondant a ¢, = n), algorithme de tri rapide
d’une liste, dont on sait que sa complexité moyenne est en nlnn, terme que 'on
retrouve dans le développement obtenu au Théoreme 7.

Plus généralement, les techniques d’analyse de singularités sont, on 1’a vu, un ou-
til trés puissant pour relier le comportement d’une fonction complexe au voisinage de
sa singularité, avec le comportement de ses coefficients de Taylor, en 'occurence des
colits de complexité moyens. Néanmoins, si le schéma de raisonnement proposé par
les travaux de Kapur semble assez générique, sa mise en application dépend fonda-
mentalement du modéle de probabilité sous lequel “vivent” nos arbres. Par exemple,
I’étude des moments et des lois limites sous le modéle uniforme conduit a des distri-
butions qui ne sont plus nécessairement gaussiennes (comme c’était le cas pour notre
étude avec a < 0.5), mais uniquement déterminées par leurs moments, comme pour
notre variable Y. De plus, un point intéressant de son étude est que la normalisation

a effectuer est en —, quelle que soit la valeur de « (différente de 0.5). Par ailleurs,
/rLOé

cette étude du modéle uniforme est sensiblement plus technique et fait appel, no-
tamment, aux développements asymptotiques des fonctions polylogarithmes Li,, et
de leurs dérivées successives.

Dans notre cas, pour revenir au contexte initial présenté en introduction, celui
des puces & ADN, et de la modélisation par des arbres aléatoires, cet aspect pose le
probléme sous-jacent des estimateurs choisis pour déterminer cette loi de probabilité.
L’équipe de bio-informatique de Lille 2 travaille actuellement a la détermination de
ces estimateurs (dans le cadre d’arbres m-aires, avec m > 2), mais une fois ce travail
achevé, il restera a regarder comment se comportent nos équations de récurrence
reliant f,, et t,,, selon que 'on se situe sous une loi estimée ou sous la loi “réelle”.
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A Propriétés du polyndéme caractéristique ()

Le polynome 1 est défini par »(A) = X" T —ml = A(A+1)--- (A4+m—2) —ml.
Il a pour racines racines A\y = 2, Ao, ..., \,,_1, ordonnées suivant les parties réelles
décroissantes.

Ce polynome intervient dans la résolution de I’équation différentielle :

AU (2) = B U (2) 4 ml(1 — 2)" M D A(2).

Les différentes identités utilisées dans ce mémoire concernant ce polynéme sont
résumeées ici.

Identité 1 Si A ¢ {\1,..., A1},

s 1 1
Z A=)~ o0V

Soit r et n des entiers naturels non nuls, nous notons H"” le nombre harmonique
d’ordre r
1
(r) — -
Hn - Z jr ’
j=1

) le nombre harmonique usuel.

Pour r = 1 nous notons H,, = Hfll

Identité 2 Pour 0 < k <m — 3,

Identité 3
W) = mi(Hy —1)  and  $(2) = mi[(H, — 1) — (HD - 1))

Identité 4

m—1 1 B ] ) Hr(n2) .
=2 (A —2)¢'(N;) — 2(ml) (H, —1)2|

39



B Programmes utilisés pour les simulations

Les programmes utilisés pour la simulation ont été réalisés en langage R.

Création d’un arbre a partir d’une liste

Arbre <- function(x)

{ z<-list(racine=c(0,0),gauche=c(),droit=c())
z $ racine=c(x[1],length(x))
zl=x|which(x<x[1])]

z2=x|which(x>x[1])]

if (length(z1)!=0)

z $gauche=Arbre(z1)

if (length(z2)!=0)

z $droit=Arbre(z2)

z

}

Création d’une permutation aléatoire de taille 10000

Permut <- function(a)
{

for (i in 1 :10000)

{
t=floor(runif(1,1,i+1))
v=alt]

alt]=ali]

ali|=v

}

end

a

}
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Calcul de la complexité X, pour un arbre et une suite (%,)
donnés

Dans ce programme, l’entrée a fournir est un arbre.
Complexity <- function(a)

if (length(a$racine)==2)
o=Complexity(a$gauche)+Complexity(a$droit)+ (a$racine[2]) ~ 0.5
0

}

Il va de soit que la puissance 0.5 peut étre remplacée par n’importe quelle puis-
sance a.

Programme standard pour obtenir un échantillon de taille 5000
construit & partir d’arbres a 10000 clés

w=c()
for (i in 1 :5000)
w=c(w,Complexity(Arbre(Permut(1 :10000))))
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