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Motivation

Multiple Harmonic Sums

@ Generalized Harmonic Numbers
N
H,(N):ZF NeNr>0
n=1

Extended to compositions s = (Sy,...,Sr)

1
Hs(N)= > P

N>ni>...>n >0 1
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Motivation

Multiple Harmonic Sums

@ Generalized Harmonic Numbers
N
H,(N):ZF NeNr>0
n=1

Extended to compositions s = (Sy,...,Sr)

1
Hs(N)= > P
n

N>ni>...>n >0 1-

@ Appear in the study of probabilities (quadtrees [Flajolet et
al., 93], maxima in hypercubes [Devroye et al., 05]), and
also in quantum physics, knot theory...etc
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Motivation

Our goal

@ Asymptotic behaviour of Hg(N) ?
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Motivation

Our goal

@ Asymptotic behaviour of Hg(N) ?

@ Linked the behaviour of Ps(z) = 3\~ Hs(N)zN, as z — 1.
But

@ So ? Let us use some results on the noncommutative
generating series

Piz)= ) Pu(z)w

weX*
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Ordinary G.S. of {H

Generating series )
g Noncommutative G.S. of {R,
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Ordinary G.S. of {Hy(N),N > 0}
Noncommutative G.S. of {Py,w € X*}

Generating series

Definition

Liw(z)
1-z°

Forw € X*, we put Py(z) =

Proposition

Let w € X*x;. Then P, (z) is the ordinary generating series of
{Hw(N),N >0} :

Pu(z) = > Hu(N)z"

N>0
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Ordinary G.S. of {Hw(N),N > 0}

Generating series . -
9 Noncommutative G.S. of {Py, w

Noncommutative generating series
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Ordinary G.S. of {Hw(N),N > 0}

Generating series . -
9 Noncommutative G.S. of {Py, w

Noncommutative generating series

P(z) = 1 i 7 [oP(1 — 2)] H et(%02,
leLyn(X)\{xo,X1 }

where ¢ is the morphism defined by o(xg) = —X1,0(X1) = —Xo.

This is due to the fact that [Hoang et al.,99]

N
L@) =lta-2) [ e
leLyn(X)\{xo,x1}
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Ordinary G.S. of {Hw(N),N > 0}

Generating series Noncommutative G.S. of {Py,w € X*}

Example

For example,

Poi(z) = —1f Py(1—2)+ izlog(l—z)Pz(l—z)

1 ¢(3)
21_ log?(1 — z)Py(1 — Z)+ 1

Then, we deduce the singular expansion of P, ; around z = 1.
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Singular expansion

. ’ ) Asymptoti pansion
Computing Asymptotic Expansion ympto f
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e Computing Asymptotic Expansion
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Singular expansion

. ’ ) Asymptotic expansion
Computing Asymptotic Expansion YMPIOUC ext

Main Theorem

LetC=C [z 1 1i } and g € C[(Pw)wex=x,]- There exist

8 e€Coel and B, € N such that

z)~ Y a(l-2z)%logh(1-2), for z—1.
=0

Therefore, there exist b; € C,n; € Z and x; € N such that

[z"]g(z Z b;n™ log*i (n), n — oco.
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Singular expansion

. ’ ) Asymptotic expansion
Computing Asymptotic Expansion YMPIOUC ext

Proof(1)

@ First: reduction to the case f(z) = Py(2).
Factorization of P = Py (Z) = > finite AuPu(1 — z),u € X*X;.
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Singular expansion

. ’ ) Asymptotic expansion
Computing Asymptotic Expansion YMPIOUC ext

Proof(1)

@ First: reduction to the case f(z) = Py(2).
Factorization of P = Py (Z) = > finite AuPu(1 — z),u € X*X;.

@ Foru e X*x3 U{Xo}, we have

Pi(l—2z) = > Huy(n)(1-2)"

n>0
log(1 —z)

PXo(Z) = 7

= The first expansion follows.
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Singular expansion
Asymptotic expansion

Computing Asymptotic Expansion

Example
From
z z
Pai(z) = —1_ZP3(1—Z)+1_Zlog(1—z)P2(1_z)
LI A G}
T 317092 -2)+
we deduce
2 —_
P1(z) = %—Hog(l—z)_l_w

* % (*'092(1 —z)+log(1 fZ)) +0(|1 = z|).
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Singular expansion
Asymptotic expansion

Computing Asymptotic Expansion

Proof(2)

@ Note that (1 — z)*log?(1 — z) = (-1)°31(1 — z)a“Pylg(z).
But [z”]ny(z) = Hylg(n) =Hiq..1(n).

Proposition

H yk is an algebraic combination of {H; }1<,<x, which are
algebralcally independent.

@ Expansion of H;(n) computable by Euler-MacLaurin
@ Then, action of 1 — z over P,

21— 2)Pu(z) = Hu(n)— Huy(n— 1)
22— S (k)
k=0
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Singular expansion

Computing Asymptotic Expansion REITHITS GTEE

Example

Poa(z) = f(f)z+|og(1_z)_l_logz(;—z)
v o (G2 D) o,
But
ML )

1-2z
[ZN]log(1 -2) = -
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Singular expansion
Asymptotic expansion

Computing Asymptotic Expansion

Example(2)
201 _ 21(1 —z)P,2(2)
[ N]Iog (; Z) _ [ZN] 5 Y1
= M- 2)P,(2)
= Hy(N) —Hp(N - 1)

But 1
Hy2(N) = E[HE(N) — Ha(N)].

So, we finally find :

[zM]P21(z) = Hz1(N)

_ C(S)_Iog(N)l\Tl—kv ;IogN(;\I) O(N12>
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Singular expansion
Asymptotic expansion

Computing Asymptotic Expansion

Thank you for your attention
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Technical details

Polylogarithms and Euler-ZAgier sums : definitions

@ For k a positive integer,

: z"

Lig(z) =) &
n>0
@ Fors =(s1,...,Sr), and for |z| < 1 we define
. zM
Us() = > 5 5
ni>..>n>0 1 "°° 0T

For s; > 1, by an Abel's theorem, we have :

limLis(z) = lim Hs(N) = ¢(s).

z—1 — N—+o00
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Technical details

Encoding by words

Encoding for s :

s;—1

= (S1,.--,Sr) e W = X3" 1 xq - x5 X € X,

where X = {Xg,X1}.

Lis(z) = Liw(z2),

and in the same way, we denote

Hs(N) = Hw(N), and ((s) = {(w).

We extend also the definition of Liy by putting Liy,(z) = log(z).
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Technical details

Lyndon words

@ X* totally ordered by putting : Xg < Xq .
@ | Lyndonword iff | =uv,v #e=1<vVv

Set of Lyndon words over X, of length < 4 :

2 2 3 2,2 3
Lyn(X) = {Xo, X1, X§X1, XoX1, X3 X1, XgXT, XoX7, - - -}
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Technical details

P.B.W. Basis [Reutenauer, 93]

@ Forl € Lyn(X),l =uv,u,v € Lyn(X) and v as long as
possible

QI = [QU,QV]:QUQV—QVQU
Oy = x ifxeX,
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Technical details

P.B.W. Basis [Reutenauer, 93]

@ Forl € Lyn(X),l =uv,u,v € Lyn(X) and v as long as
possible

QI = [QU,QV]:QUQV—QVQU
Oy = x ifxeX,

@ Forl =xw € Lyn(X),x € X,

w :llallgz...llfék,ll >y > > .
Slu_‘all_l_’...\_USILuak
1 k

arlas! ..oy

where . denotes the shuffle product on words.
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Technical details

Lyndon words, bracket forms and dual basis

| Q S
Xo Xo Xo
X1 X1 X1
XoX1 [Xo, X1] XoX1
Xo%Xq [Xo, [Xo0, X1]] X0X1
XoX12 [0, X1], X1] XX
Xo3Xy [Xo, [Xo, [Xo, X4]]] X0°X1
Xo3% 3 [0, [Xo, [[[X0, Xa], Xa], Xa]]] | Xo®x1°
Xo®X1X0X1? | [Xo, [[Xo, X1], [[Xo, Xa], Xa]]] | 3X0X1® + Xo?X1XoX1?
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Technical details

Going further

X Bk l

—+o00

Bk _r -1\ 1
Hr(N) ~ C(r) ( 1)Nr r _ 1\NT—1 Zk_krj:]_(r_l)w

And a a
H&...H
_ _1\k—>a 1 K
Hyx = Z (-1) largyl- - Kaay!
a;+2as+...+kag =k
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Shuffle Algebras
Combinatorics on words Polylogarithms

Outline

e Combinatorics on words
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Shuffle Algebras
Combinatorics on words Polylogarithms

Shuffle products

The shuffle (resp. stuffle) of u = au’ and v = bv’ € X* (resp.
u=yju andv =y;v’ € Y*)is defined by

€ewu = Uwe=uUand
uwv = auwv)+buwv),
resp. ewU = Uwe=U and
uwv = Yy wv)+yuwv)+yu wv’).
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Shuffle Algebras
Combinatorics on words Polylogarithms

Shuffle products

The shuffle (resp. stuffle) of u = au’ and v = bv’ € X* (resp.
u=yju andv =y;v’ € Y*)is defined by

€ewu = Uwe=uUand
uwv = auwv)+buwv),
resp. ewU = Uwe=U and
uwv = Yy wv)+yuwv)+yu wv’).
For example,

® XoX1 X1 = X1XoX1 + 2XoX? and
Yo wy1 = Yi1Y2 +Y2Y1 + Y3,
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Shuffle Algebras
Combinatorics on words Polylogarithms

Shuffle products

The shuffle (resp. stuffle) of u = au’ and v = bv’ € X* (resp.
u=yju andv =y;v’ € Y*)is defined by

€ewu = Uwe=uUand
uwv = auwv)+buwv),
resp. ewU = Uwe=U and
uwv = Yy wv)+yuwv)+yu wv’).
For example,

® XoX1 X1 = X1XoX1 + 2XoX? and
Yo wy1 = Yi1Y2 +Y2Y1 + Y3,
@ XoX1 1 XoX1 = 2XoX1XoX1 + 4Xox? and
YoY1 wYs = Y2Y1Y3 + Y2Y3Y1 + YaY2y1 + Y2Ya + YsYi.
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Shuffle Algebras
Combinatorics on words Polylogarithms

Justification of the stuffle product

1 L1 1 1
Z nst Z msz = Z nsims2 + Z mS2nst

n=1 m=1 N>n>m>0 N>m>n>0

1
D e

N>n>0

Hs,(N)Hs,(N) = Hs,s,(N) +Hs,s,(N) + Hs 4s,(N)
ysl L) ySZ = ySl,Sz + ySZ,Sl + y31+32
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Shuffle Algebras
Combinatorics on words Polylogarithms

Justification of the stuffle product

N
1 1 1 1
Z ﬁ Z m52 - Z n51m52 + Z m52n51
n=1 m=1 N>n>m>0 N>m>n>0
1
+ Z nsi+s2
N>n>0

Hs,(N)Hs,(N) = Hs,s,(N) +Hs,s,(N) + Hs 4s,(N)
ysl L) ySZ = ySl,Sz + ySZ,Sl + y31+32

With the convention Hs = Hy,

Theorem (Hoang, 03)

Let Hc = (spang(Hw | w € Y*),-). Then He ~ (C(Y), =)

C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh Algorithmic and Combinatoric Aspects of M.H.S.



Shuffle Algebras
Combinatorics on words Polylogarithms

Polylogarithms : properties (1)

s;—1

S =(S1,...,8r) ¥ U =X, xl---xgr_lxlex*

Putting wo = % and w; = %, we have

Lis(z) = Liy(z) = g wd o,

o
é.\..
g
e

= Allows to extend the definition of Li, over X* with the
definition
Lix,(z) = log(z).
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Shuffle Algebras
Combinatorics on words Polylogarithms

Polylogarithms : properties (2)

Theorem (Hoang et al.,00)
The C-algebra of {Liy,w € X*} is isomorphic to (C(X), ).

Examples

Since XoX1 1w X1 = X1XoX1 + 2XoX2, we get :
Lis Liy = Li1’2 +2 Liz,l
From XgXp i XgX1 = 2XgX1XoX1 + 4x0x12, we get :

LI% =2 Li272 +4 Liz}l
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