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Multiple Harmonic Sums

Generalized Harmonic Numbers

Hr (N) =
N∑

n=1

1
nr N ∈ N, r ≥ 0

Extended to compositions s = (s1, . . . , sr )

Hs(N) =
∑

N≥n1>...>nr >0

1
ns1

1 . . . nsr
r

Appear in the study of probabilities (quadtrees [Flajolet et
al., 93], maxima in hypercubes [Devroye et al., 05]), and
also in quantum physics, knot theory...etc
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Our goal

Asymptotic behaviour of Hs(N) ?

Linked the behaviour of Ps(z) =
∑

N≥0 Hs(N)zN , as z → 1.
But

Ps(z) =
1

1− z
Lis(z)

Polylogarithm ?

So ? Let us use some results on the noncommutative
generating series

P(z) =
∑

w∈X∗

Pw (z)w .
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Ordinary G.S. of {Hw (N), N ≥ 0}
Noncommutative G.S. of {Pw , w ∈ X∗}

Definition

Definition

For w ∈ X ∗, we put Pw (z) =
Liw (z)

1− z
.

Proposition

Let w ∈ X ∗x1. Then Pw (z) is the ordinary generating series of
{Hw (N), N ≥ 0} :

Pw (z) =
∑
N≥0

Hw (N)zN
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Ordinary G.S. of {Hw (N), N ≥ 0}
Noncommutative G.S. of {Pw , w ∈ X∗}

Noncommutative generating series

Let L(z) =
∑

w∈X∗

Liw (z)w and P(z) =
∑

w∈X∗

Pw (z)w .

Theorem (Factorization theorem)

P(z) =
z

1− z
[σP(1− z)]

↘∏
l∈Lyn(X)\{x0,x1}

eζ(Sl )Ql ,

where σ is the morphism defined by σ(x0) = −x1, σ(x1) = −x0.

This is due to the fact that [Hoang et al.,99]

L(z) = [σL(1− z)]

↘∏
l∈Lyn(X)\{x0,x1}

eζ(Sl )Ql .

Lyndon word? Ql , Sl ?
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Example

For example,

P2,1(z) = − z
1− z

P3(1− z) +
z

1− z
log(1− z)P2(1− z)

− 1
2

z
1− z

log2(1− z)P1(1− z) +
ζ(3)

1− z
.

Then, we deduce the singular expansion of P2,1 around z = 1.
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Main Theorem

Theorem

Let C = C
[
z,

1
z

,
1

1− z

]
and g ∈ C[(Pw )w∈X∗x1 ]. There exist

aj ∈ C, αj ∈ Z and βj ∈ N such that

g(z) ∼
+∞∑
j=0

aj(1− z)αj logβj (1− z), for z → 1.

Therefore, there exist bi ∈ C, ηi ∈ Z and κi ∈ N such that

[zn]g(z) ∼
+∞∑
i=0

bin
ηi logκi (n), for n→∞.
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Singular expansion
Asymptotic expansion

Proof(1)

First : reduction to the case f (z) = Pw (z).
Factorization of P⇒ Pw (z) =

∑
finite λuPu(1− z), u ∈ X ∗x1.

For u ∈ X ∗x1 ∪ {x0}, we have

Pu(1− z) =
∑
n≥0

Hu(n)(1− z)n

Px0(z) =
log(1− z)

z
.

⇒ The first expansion follows.
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Example

From

P2,1(z) = − z
1− z

P3(1− z) +
z

1− z
log(1− z)P2(1− z)

− 1
2

z
1− z

log2(1− z)P1(1− z) +
ζ(3)

1− z
,

we deduce

P2,1(z) =
ζ(3)

1− z
+ log(1− z)− 1− log2(1− z)

2

+
1− z

4

(
−log2(1− z) + log(1− z)

)
+ O(|1− z|).
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Proof(2)

Note that (1− z)α logβ(1− z) = (−1)ββ!(1− z)α+1Pyβ
1
(z).

But [zn]Pyβ
1
(z) = Hyβ

1
(n) = H1,1,··· ,1(n).

Proposition

Hyk
1

is an algebraic combination of {Hr}1≤r≤k , which are
algebraically independent.

Expansion of Hr (n) computable by Euler-MacLaurin

Then, action of 1− z over Pw

[zn](1− z)Pw (z) = Hw (n)− Hw (n − 1),

[zn]
Pw (z)

1− z
=

n∑
k=0

Hw (k).
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Example

P2,1(z) =
ζ(3)

1− z
+ log(1− z)− 1− log2(1− z)

2

+ (1− z)

(
− log2(1− z)

4
+

log(1− z)

4

)
+ O(|1− z|),

But

[zN ]
ζ(3)

1− z
= ζ(3)

[zN ] log(1− z) = − 1
N

,
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Example(2)

[zN ]
log2(1− z)

2
= [zN ]

2!(1− z)Py2
1
(z)

2
= [zN ](1− z)Py2

1
(z)

= Hy2
1
(N)− Hy2

1
(N − 1)

But

Hy2
1
(N) =

1
2
[H2

1(N)− H2(N)].

So, we finally find :

[zN ]P2,1(z) = H2,1(N)

= ζ(3)− log(N) + 1 + γ

N
+

1
2

log(N)

N2 + O

(
1

N2

)
.
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Thank you for your attention
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Technical details
Combinatorics on words

Polylogarithms and Euler-ZAgier sums : definitions

For k a positive integer,

Lik (z) =
∑
n>0

zn

nk .

For s = (s1, . . . , sr ), and for |z| < 1 we define

Lis(z) =
∑

n1>...>nr >0

zn1

ns1
1 . . . nsr

r
.

For s1 > 1, by an Abel’s theorem, we have :

lim
z→1

Lis(z) = lim
N→+∞

Hs(N) = ζ(s).
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Technical details
Combinatorics on words

Encoding by words

Encoding for s :

s = (s1, . . . , sr )←→ w = xs1−1
0 x1 · · · xsr−1

0 x1 ∈ X ∗,

where X = {x0, x1}.

Lis(z) = Liw (z),

and in the same way, we denote

Hs(N) = Hw (N), and ζ(s) = ζ(w).

We extend also the definition of Liw by putting Lix0(z) = log(z).
Back
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Technical details
Combinatorics on words

Lyndon words

X ∗ totally ordered by putting : x0 < x1 .

l Lyndon word iff l = uv , v 6= ε⇒ l < v

Example

Set of Lyndon words over X , of length ≤ 4 :

Lyn(X ) = {x0, x1, x2
0 x1, x0x2

1 , x3
0 x1, x2

0 x2
1 , x0x3

1 , . . .}

Back
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Combinatorics on words

P.B.W. Basis [Reutenauer, 93]

For l ∈ Lyn(X ), l = uv , u, v ∈ Lyn(X ) and v as long as
possible {

Ql = [Qu,Qv ] = QuQv −QvQu

Qx = x if x ∈ X ,

For l = xw ∈ Lyn(X ), x ∈ X ,
w = lα1

1 lα2
2 . . . lαk

k , l1 > l2 > · · · > lk .

Sl = x
Stt α1

l1
tt . . . tt Stt αk

lk

α1!α2! . . . αk !
,

where tt denotes the shuffle product on words.
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Lyndon words, bracket forms and dual basis

l Ql Sl

x0 x0 x0

x1 x1 x1

x0x1 [x0, x1] x0x1

x0
2x1 [x0, [x0, x1]] x0

2x1

x0x1
2 [[x0, x1], x1] x0x1

2

x0
3x1 [x0, [x0, [x0, x1]]] x0

3x1
...

...
...

x0
3x1

3 [x0, [x0, [[[x0, x1], x1], x1]]] x0
3x1

3

x0
2x1x0x1

2 [x0, [[x0, x1], [[x0, x1], x1]]] 3x0
3x1

3 + x0
2x1x0x1

2

Back
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Going further

H1(N) ∼ log N + γ −
+∞∑
k=1

Bk

k
1

Nk ,

Hr (N) ∼ ζ(r)− 1
(r − 1)N r−1 −

+∞∑
k=r

Bk−r+1

k − r + 1

(
k − 1
r − 1

)
1

Nk

And

Hyk
1

=
∑

a1+2a2+...+kak =k

(−1)k−
P

ai
Ha1

1 · · ·H
ak
k

1a1a1! · · · kak ak !
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Technical details
Combinatorics on words

Shuffle Algebras
Polylogarithms

Shuffle products

The shuffle (resp. stuffle) of u = au′ and v = bv ′ ∈ X ∗ (resp.
u = yiu′ and v = yjv ′ ∈ Y ∗) is defined by

ε tt u = u tt ε = u and

u tt v = a(u′ tt v) + b(u tt v ′),

resp. ε u = u ε = u and

u v = yi(u
′ v) + yj(u v ′) + yi+j(u

′ v ′).

For example,

x0x1 tt x1 = x1x0x1 + 2x0x2
1 and

y2 y1 = y1y2 + y2y1 + y3,

x0x1 tt x0x1 = 2x0x1x0x1 + 4x0x2
1 and

y2y1 y3 = y2y1y3 + y2y3y1 + y3y2y1 + y2y4 + y5y1.
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Shuffle Algebras
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Justification of the stuffle product

N∑
n=1

1
ns1

N∑
m=1

1
ms2

=
∑

N≥n>m>0

1
ns1ms2

+
∑

N≥m>n>0

1
ms2ns1

+
∑

N≥n>0

1
ns1+s2

Hs1(N)Hs2(N) = Hs1,s2(N) + Hs2,s1(N) + Hs1+s2(N)

ys1 ys2 = ys1,s2 + ys2,s1 + ys1+s2

With the convention Hs = Hw ,

Theorem (Hoang, 03)

Let HC = (spanC(Hw | w ∈ Y ∗), ·). Then HC ' (C〈Y 〉, )
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Shuffle Algebras
Polylogarithms

Polylogarithms : properties (1)

s = (s1, . . . , sr )←→ u = xs1−1
0 x1 · · · xsr−1

0 x1 ∈ X ∗

Putting ω0 = dz
z and ω1 = dz

1−z , we have

Lis(z) = Liu(z) =

∫
0 z

ωs1−1
0 ω1 · · ·ωsr−1

0 ω1.

⇒ Allows to extend the definition of Liu over X ∗ with the
definition

Lix0(z) = log(z).
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Shuffle Algebras
Polylogarithms

Polylogarithms : properties (2)

Theorem (Hoang et al.,00)

The C-algebra of {Liw , w ∈ X ∗} is isomorphic to (C〈X 〉, tt).

Examples

Since x0x1 tt x1 = x1x0x1 + 2x0x2
1 , we get :

Li2 Li1 = Li1,2 +2 Li2,1

From x0x1 tt x0x1 = 2x0x1x0x1 + 4x0x2
1 , we get :

Li22 = 2 Li2,2 +4 Li2,1
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