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Multiple Harmonic Sums (M.H.S.)

I Generalized Harmonic Numbers

Hr (N) =
N∑

n=1

1
nr N ∈ N, r ≥ 0

Extended to compositions s = (s1, . . . , sr )

Hs(N) =
∑

N≥n1>...>nr >0

1
ns1

1 . . . nsr
r

I Appear in the study of probabilities (quadtrees [Flajolet et
al., 93]), in quantum physics [Blümlein, 99], in knot
theory...etc
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Our results

I Description of the algebra of Multiple Harmonic Sums
(M.H.S), isomorphic to a shuffle algebra.

I Algorithm to compute the Asymptotic Expansion (A.E.) of
Hs(N), as N → +∞, i.e. a polynomial p ∈ R[X , Y ] verifying

Hs(N) = p
(

log N,
1
N

)
+ O

(
1

Nq

)
.
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Symbolic encoding

We adopt the following encoding :

s = (s1, . . . , sr )←→ w = ys1 · · · ysr ∈ Y ∗,

where Y = {yi |i ∈ N \ {0}}.

We now denote Hs(N) = Hw (N) and, for s1 > 1,

lim
N→+∞

Hs(N) = ζ(s) = ζ(w) (MZV ).
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Isomorphism theorem

Harmonic product

N∑
n=1

1
ns1

N∑
m=1

1
ms2

=
∑

N≥n>m>0

1
ns1ms2

+
∑

N≥m>n>0

1
ms2ns1

+
∑

N≥n>0

1
ns1+s2

⇒ Hys1
(N)Hys2

(N) = Hys1 ys2
(N) + Hys2 ys1

(N) + Hys1+s2
(N)

The commutative harmonic product of two words is defined by

ε u = u,

(yiu) (yjv) = yi(u v) + yj(u v) + yi+j(u v).

Theorem (Hoffman, 97)
For any u, v ∈ Y ∗, Hu v (N) = Hu(N) Hv (N).
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Isomorphism theorem

Isomorphism theorem

Example
y2y5 y4 = y2(y5 y4) + y4(y2y5 ε) + y6(y5 ε)

= y2(y5y4 + y4y5 + y9) + y4y2y5 + y6y5

= y2y5y4 + y2y4y5 + y4y2y5 + y2y9 + y6y5.

So,

H2,5(N)H4(N) = H2,5,4(N)+H2,4,5(N)+H4,2,5(N)+H2,9(N)+H6,5(N).

Denoting HR = ( Span {Hw}w∈Y∗ , .), we have a better result :

Theorem
HR ' (R〈Y 〉), ).
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Algebraic basis for M.H.S.

Radford theorem

Theorem (Radford, Hoffman, 97)

(R〈Y 〉, ) ' (R[Lyn(Y )], )

Any word can be decomposed, uniquely, as a product of
Lyndon words. Lyndon word?

Remark : The process is constructive. Construction?

Corollary
HR ' R[Hl , l ∈ Lyn(Y )].
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Algebraic basis for M.H.S.

Examples

Example

y1y4y2 = y1 y4y2 − y4y1y2 − y4y2y1 − y4y3 − y5y2.

⇐⇒ H1,4,2 = H1H4,2 − H4,1,2 − H4,2,1 − H4,3 − H5,2.

Corollary
The Harmonic Sums {Hw , w ∈ Y ∗} are R-linearly independent.
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Principles

Recursive definition of Hw

For w = ys1 . . . ysr = ys1w ′,

Hw (N) =
∑

N≥n1>...>nr >0

1
ns1

1 . . . nsr
r

=
N∑

n1=r

1
ns1

1

∑
n1−1≥n2>...>nr >0

1
ns2

2 . . . nsr
r

=
N∑

i=r

1
is1

Hw ′(i − 1).
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Principles

Principle of the algorithm
I If w = yr , r ≥ 1 the asymptotic expansion of Hr (N) is

known (Euler-MacLaurin).

Example

H2(N) = ζ(2)− 1
N

+
1

2N2 + O
(

1
N3

)
I If w = yr w ′, we use the recursive definition under the form

Hw (N) = ζ(w)−
+∞∑

i=N+1

1
is1

Hw ′(i − 1)

and we replace Hw ′(i − 1) by its A.E.
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Application

Example for w = y4y2

H4,2(N) = ζ(4, 2)−
∞∑

i=N+1

H2(i − 1)

i4
,

But H2(i − 1) = ζ(2)− 1
i
− 1

2
1
i2

+ O
(

1
i3

)
so

H4,2(N) = ζ(4, 2)− ζ(2)
∞∑

i=N+1

1
i4

+
∞∑

i=N+1

1
i5

+
1
2

∞∑
i=N+1

1
i6

+
∞∑

i=N+1

O
(

1
i7

)
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Application

Example for w = y4y2 (2)

So, expanding the remainder in N,

H4,2(N) = ζ(4, 2)− 1
3

ζ(2)

N3 +
1
2 ζ(2) + 1

4
N4

−
1
3 ζ(2) + 2

5
N5 + O

(
1

N6

)
Remark : we got an A.E. up to order 6 by computing an A.E. of
the numerator up to order 3.
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Application

Case of a divergent word w = y1y4

I Problem : ζ(1, 4) diverges ! Indeed, Hw (N) converges
when N →∞ iff w = ys1w ′ with s1 > 1.

I Solution: Radford decomposition.
Since y1y4 = y1 y4 − y4y1 − y5, we have

H1,4(N) = H1(N)H4(N)− H4,1(N)− H5(N)

=
π4

90
ln (N) +

π4

90
γ − ζ (4, 1)− ζ (5) +

π4

180
1
N

− π4

1080
1

N2 +
1
9

1
N3 +

(
π4

10800
− 1

24

)
1

N4 + O
(

1
N5

)
I Conclusion : need to store a table of A.E. for M.H.S.

indexed by Lyndon words.
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Application

Thank you for your attention
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Technical details

Lyndon words

I Y ordered by yi < yj if i > j ⇒ lexicographical order over
Y ∗

I l ∈ Y ∗ Lyndon word⇔ l strictly smaller than any of its
proper right factors.
We denote by Lyn(Y ) the set of Lyndon words over Y .

I Example : w = y1y4y2 /∈ Lyn(Y ) since w > y2.
But u = y4y2y1 ∈ Lyn(Y ).

Back
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Construction

Theorem
Any nonempty word w ∈ Y ∗ may be written uniquely as a
decreasing product of Lyndon words :

w = lα1
1 lα2

2 . . . lαn
n , li ∈ Lyn(Y ), l1 > l2 > . . . > ln.

Lemma
Let w = lα1

1 lα2
2 . . . lαn

n ∈ Y ∗. Then, putting

Qw =
l α1
1 l α2

2 . . . l αn
n

α1!α2! . . . αn!
,

we have Qw = w + Rw , where Rw only contains words smaller
than w . Back
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