

Structure and Asymptotic Expansion of Multiple Harmonic Sums

C. Costermans
 Université Lille 2
 1, Place Déliot,
 59024 Lille, France

ccostermans@univ-lille2.fr

Hoang Ngoc Minh
 Université Lille 2
 1, Place Déliot,
 59024 Lille, France

hoang@univ-lille2.fr

J.Y. Enjalbert
 Université Lille 2
 1, Place Déliot,
 59024 Lille, France

jyenjalbert@univ-lille2.fr

M. Petitot
 Université Lille 1
 59655 Villeneuve d'Ascq, France

petitot@lifl.fr

ABSTRACT

We prove that the algebra of *multiple harmonic sums* is isomorphic to a *shuffle algebra*. So the multiple harmonic sums $\{H_s\}$, indexed by the compositions $s = (s_1, \dots, s_r)$, are \mathbb{R} -linearly independent as real functions defined over \mathbb{N} . We deduce then the algorithm to obtain the asymptotic expansion of multiple harmonic sums.

Categories and Subject Descriptors

G.2.1 [Discrete Mathematics]: Combinatorics—combinatorial algorithms, generating functions

General Terms

Algorithms, Languages

Keywords

Polylogarithms, multiple harmonic sums, Lyndon words, polyzéta

1. INTRODUCTION

Let $\mathbb{N}_{>0}$ be the set of positive integers. The harmonic sums

$$H_s(N) = \sum_{n=1}^N \frac{1}{n^s}, \quad (s \in \mathbb{N}_{>0}, N \in \mathbb{N}_{>0}) \quad (1)$$

can be generalized to any composition s of length $r \geq 0$, i.e. a sequence of positive integers $s = (s_1, \dots, s_r)$ by putting

$$H_s(N) = \sum_{N \geq n_1 > \dots > n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}} \quad (2)$$

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

ISSAC'05, July 24–27, 2005, Beijing, China.
 Copyright 2005 ACM 1-59593-095-7/05/0007 ...\$5.00.

with the convention $H_s(N) \equiv 1$ when s is the empty composition.

It can be proved that the limit

$$\zeta(s) = \lim_{N \rightarrow \infty} H_s(N) \quad (3)$$

exists if and only if the composition s is empty or if $s_1 \neq 1$. In this case, we will say that s is a *convergent* composition. The values $\zeta(s)$ are called "Multiple Zeta Values" (MZV). Harmonic sums and MZV arise in high-energy particle physics [3] and in analysis of algorithms [5].

We consider the \mathbb{R} -vector space $\mathcal{H}_{\mathbb{R}}$ generated by the H_s , seen as functions from \mathbb{N} to \mathbb{R} . The theory of quasi-symmetric functions shows that the $\{H_s(N)\}_s$ satisfy *shuffle* relations. In particular, the product of two harmonic functions is a sum of harmonic functions : for all $a, b \in \mathbb{N}_{>0}$, we have

$$H_a(N) \cdot H_b(N) = H_{a,b}(N) + H_{b,a}(N) + H_{a+b}(N). \quad (4)$$

So, the vector-space $\mathcal{H}_{\mathbb{R}}$ is closed under product. The main result of this article is to prove that in $\mathcal{H}_{\mathbb{R}}$, the functions $\{H_s\}_s$ are linearly independent. As a consequence, $\mathcal{H}_{\mathbb{R}}$ appears to be *isomorphic* to some shuffle algebra noted $(\mathbb{R}\langle Y \rangle, \sqcup)$. The structure of this algebra is well known and Hoffman showed that it is freely generated by Lyndon words on the alphabet Y .

Let $\mathcal{H}_{\mathbb{R}}^0$ be the \mathbb{R} -algebra generated by the functions H_s when s describes the set of all convergent compositions. We show that

$$\mathcal{H}_{\mathbb{R}} \simeq \mathcal{H}_{\mathbb{R}}^0[H_1] \quad (5)$$

i.e. that any harmonic function can be decomposed *uniquely* in a univariate polynomial, on the sums $H_1(N) = \sum_{n=1}^N n^{-1}$.

This decomposition is obtained thanks to a variant of Taylor expansion for univariate polynomials, by defining a derivation D in the shuffle algebra $(\mathbb{R}\langle Y \rangle, \sqcup)$. In fact, this decomposition provides an asymptotic expansion, up to order 0, of $H_s(N)$ as $N \rightarrow \infty$. We can then deduce an asymptotic expansion, up to *any* order, by using the second form of the Euler-Mac Laurin summation formula.

Our result of linear independance of the functions H_s lies on the \mathbb{C} -linear independance of the *polylogarithm* functions

(z is a complex number so that $|z| < 1$)

$$\text{Li}_s(z) = \sum_{n_1 > \dots > n_l > 0} \frac{z^{n_1}}{n_1^{s_1} \dots n_l^{s_l}}, \quad (6)$$

first proved in [9], then resumed in [13, 14]. In this article, harmonic functions are seen as Taylor coefficients

$$\frac{1}{1-z} \text{Li}_s(z) = \sum_{N=0}^{\infty} \text{H}_s(N) z^N. \quad (7)$$

By using the combinatorics developed by M. Bigotte in [2], it is possible to consider a similar generalization for the harmonic sums related to *coloured* MZV

$$\zeta(\xi_1, \dots, \xi_l) = \sum_{n_1 > \dots > n_l > 0} \frac{\xi_1^{n_1} \dots \xi_l^{n_l}}{n_1^{s_1} \dots n_l^{s_l}}, \quad (8)$$

where ξ_1, \dots, ξ_l are roots of unity.

2. BACKGROUND

2.1 How to shuffle?

We consider the *non* commutative alphabet $Y = \{y_n \mid n \in \mathbb{N}_{>0}\}$. As usual, the set of all words over Y is denoted Y^* and the empty word is denoted ϵ . The length of the word w is denoted $|w|$ and the word w resulting from the concatenation of two words u and v is the word $w = uv$.

Let R be a commutative ring containing \mathbb{Q} . A polynomial $p \in R\langle Y \rangle$ is a linear combination of words, with coefficients in R . The coefficient of the word w in polynomial p is noted $(p|w)$ and therefore

$$p = \sum_{w \in Y^*} (p|w)w, \quad (p|w) \in R. \quad (9)$$

The concatenation product for words is extended to polynomials by linearity.

The shuffle product of two words $u = y_i u'$ and $v = y_j v'$ in Y^* is recursively defined by $\epsilon \uplus w = w$, for all $w \in Y^*$ and

$$u \uplus v = y_i(u' \uplus v) + y_j(u \uplus v') + y_{i+j}(u' \uplus v'), \quad (10)$$

with $i, j \in \mathbb{N}_{>0}$ and $u', v' \in Y^*$.

This product is also extended to $R\langle Y \rangle$ by linearity. Provided with this shuffle product, $R\langle Y \rangle$ becomes an associative and commutative R -algebra noted $(R\langle Y \rangle, \uplus)$.

We can totally order Y by putting $y_i < y_j$ if $i > j$. So y_1 is the biggest letter of the alphabet Y . *Lexicographic* order is then recursively defined on words $w \in Y^*$ by

$$\begin{cases} \epsilon < w \text{ for } w \in Y^* \setminus \epsilon \\ y_i u < y_j v \text{ if } i > j \text{ or if } i = j \text{ and } u < v. \end{cases}$$

A nonempty word w is called a Lyndon word if it is strictly smaller (for lexicographic order) than any of its proper right factors, i.e. $w < v$ for any factorization $w = uv$ with $u \neq \epsilon$ and $v \neq \epsilon$. Let $\text{Lyndon}(Y)$ denotes the set of Lyndon words over Y .

Let

$$C^0 = R \oplus (R\langle Y \rangle \setminus y_1 R\langle Y \rangle). \quad (11)$$

Hoffman generalized Radford theorem in the following way

THEOREM 1 ([12, 10]). *One has*

$$(R\langle Y \rangle, \uplus) \simeq (R[\text{Lyndon}(Y)], \uplus) = (C^0[y_1], \uplus).$$

This means that every polynomial in $R\langle Y \rangle$, for shuffle product, can be decomposed uniquely in a linear combination of shuffle products of Lyndon words.

2.2 Quasi monomial functions

Let $T = \{t_n \mid n \in \mathbb{N}_{>0}\}$ a countable *commutative* set. To each word $w = y_{s_1} \dots y_{s_r} \in Y^*$, we associate the quasi monomial function

$$M_w = \sum_{n_1 > \dots > n_r > 0} t_{n_1}^{s_1} \dots t_{n_r}^{s_r}, \quad (12)$$

which is a formal series on the letters $t_n \in T$, with coefficients in \mathbb{N} . For the empty word, we define $M_\epsilon = 1$. Thanks to Gessel works, it is known that the product of quasi monomial functions is a sum of quasi monomial functions. Moreover, we have the following identity between formal series

$$M_u M_v = M_{u \uplus v}, \quad (u, v \in Y^*). \quad (13)$$

2.3 Polylogarithms

Let us associate to any word $w = y_{s_1} \dots y_{s_r}$ the polylogarithm $\text{Li}_w(z)$ defined for $|z| < 1$ by

$$\text{Li}_w(z) = \sum_{n_1 > \dots > n_r > 0} \frac{z^{n_1}}{n_1^{s_1} \dots n_r^{s_r}}, \quad (14)$$

for $r > 0$ and by $\text{Li}_\epsilon(z) = 1$, for the empty word ϵ .

THEOREM 2 ([9]). *The functions Li_w , for $w \in Y^*$, are \mathbb{C} -linearly independent.*

In fact, this result can be improved by replacing \mathbb{C} by any algebra of analytic functions defined over $\mathbb{C} - \{0, 1\}$, for example $\mathbb{C}[z, 1/z, 1/(z-1)]$, and the proof lies on an explicit evaluation of the monodromy group of Li_w .

3. HARMONIC SUMS ALGEBRA

3.1 Harmonic sums

DEFINITION 1. *Let $w = y_{s_1} \dots y_{s_r} \in Y^*$. Then, for $N \geq r \geq 1$, the harmonic sum $\text{H}_w(N)$ is defined as*

$$\begin{aligned} \text{H}_w(N) &= \sum_{N \geq n_1 > \dots > n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}} \\ \text{and} \quad \text{H}_w(N) &= 0 \quad \text{for } 0 \leq N < r. \end{aligned}$$

If $|w| = 0$, we put $\text{H}_\epsilon(N) = 1$, for any $N \geq 0$.

LEMMA 1. *Let $w = y_{s_1} \dots y_{s_r} \in Y^*$. The sum $\text{H}_w(N)$ is convergent, when $N \rightarrow \infty$, if and only if $s_1 > 1$.*

In this case, this limit is nothing but the polyzta (or MZV [15]) $\zeta(w)$, and thus, by an Abel's theorem

$$\lim_{N \rightarrow \infty} \text{H}_w(N) = \zeta(w) = \lim_{z \rightarrow 1} \text{Li}_w(z). \quad (15)$$

Then, the word w is said *convergent*. A polynomial of $R\langle Y \rangle$ is said convergent when it is a linear combination of convergent words.

LEMMA 2. *For $w = y_s w'$, we have*

$$\text{H}_w(N) = \sum_{k=1}^N \frac{\text{H}_{w'}(k-1)}{k^s}$$

COROLLARY 1. For $w = y_s w'$, we have

$$\zeta(w) = \sum_{k \geq 1} \frac{H_{w'}(k-1)}{l^s}, \quad (16)$$

$$H_w(N+1) - H_w(N) = (N+1)^{-s} H_{w'}(N) \quad (17)$$

LEMMA 3 ([10]). For any words u and v , we have

$$H_u \sqcup v(N) = H_u(N) H_v(N).$$

PROOF. The harmonic sum $H_w(N)$ can be obtained by specialization of the quasi-monomial function M_w at $t_i = 1/i$ if $1 \leq i \leq N$ and $t_i = 0$ if $i > N$. By (13), $H_w(N)$ satisfies the expected result. \square

3.2 Generating series

DEFINITION 2 ([6]). For any word $w \in Y^*$, let P_w be the ordinary generating series of $\{H_w(N)\}_{N \geq 0}$:

$$P_w(z) = \sum_{N \geq 0} H_w(N) z^N, \quad \text{with} \quad P_\epsilon(z) = \frac{1}{1-z}.$$

PROPOSITION 1 ([6]). For any word $w \in Y^*$ and for any complex number z satisfying $|z| < 1$, one has

$$Li_w(z) = (1-z)P_w(z).$$

PROOF. Since $P_w(z) = \sum_{N \geq 0} H_w(N) z^N$, it is known that the series expansion of $(1-z)P_w(z)$ is given by

$$(1-z)P_w(z) = H_w(0) + \sum_{N \geq 1} [H_w(N) - H_w(N-1)] z^N.$$

But, by (17), for $w = y_{s_1} w'$,

$$H_w(N) - H_w(N-1) = N^{-s_1} H_{w'}(N-1),$$

so

$$(1-z)P_w(z) = H_w(0) + \sum_{N \geq 1} \frac{H_{w'}(N-1)}{N^{s_1}} z^N = Li_w(z).$$

\square

DEFINITION 3. The Hadamard product \odot is a bilinear function from $\mathbb{C}[[z]] \times \mathbb{C}[[z]]$ to $\mathbb{C}[[z]]$ defined, for all integers n and m , by

$$z^n \odot z^m = \begin{cases} z^n & \text{if } n = m, \\ 0 & \text{if } n \neq m. \end{cases}$$

Thus, $\sum_{n=0}^{\infty} a_n z^n \odot \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} a_n b_n z^n$.

PROPOSITION 2. For $u, v \in Y^*$, one has

$$P_u(z) \odot P_v(z) = P_{u \sqcup v}(z).$$

PROOF. By Lemma 3,

$$\begin{aligned} \sum_{N \geq 0} H_u(N) z^N \odot \sum_{N \geq 0} H_v(N) z^N &= \sum_{N \geq 0} H_u(N) H_v(N) z^N \\ &= \sum_{N \geq 0} H_{u \sqcup v}(N) z^N. \end{aligned}$$

\square

COROLLARY 2 ([6]). Extended by linearity, the map $P : u \mapsto P_u$ is an isomorphism from $(R\langle Y \rangle, \sqcup)$ to the Hadamard algebra of $\{P_w\}_{w \in Y^*}$.

PROOF. Proposition 2 gives P as an algebra morphism and by Theorem 2, P is the expected isomorphism. \square

Thanks to the relations existing between $Li_w(1-z)$ and $Li_w(z)$ [8], we can precise the asymptotic behaviour of Li_w in the neighbourhood of 1. For example,

$$\begin{aligned} Li_{2,1,1}(1-t) &= -Li_4(t) + \log(t) Li_3(t) - \frac{1}{2} \log(t)^2 Li_2(t) \\ &\quad + \frac{1}{6} \log(t)^3 Li_1(t) + \frac{2}{5} \zeta(2)^2. \end{aligned}$$

So, we find, by formula (14), the expansion of $Li_{2,1,1}(1-\varepsilon)$ and, by dividing it by ε , we find the one of $P_{2,1,1}(1-\varepsilon)$:

$$\begin{aligned} P_{2,1,1}(1-\varepsilon) &= \frac{2}{5} \zeta(2)^2 \frac{1}{\varepsilon} + \frac{1}{6} \log^3 \varepsilon - \frac{1}{2} \log^2 \varepsilon + \log \varepsilon \\ &\quad - 1 + \frac{\varepsilon}{12} \log^3 \varepsilon - \frac{\varepsilon}{8} \log^2 \varepsilon + \frac{\varepsilon}{8} \log \varepsilon + O(\varepsilon) \end{aligned}$$

From this, we can also deduce the expansion of the Taylor coefficients of $P(z)$ (see [4]).

3.3 Algebra $\mathcal{H}_{\mathbb{R}}$

DEFINITION 4. The algebra $\mathcal{H}_{\mathbb{R}}$ of harmonic sums is defined as the \mathbb{R} -vector space $\mathcal{H}_{\mathbb{R}} = \text{span}_{\mathbb{R}}(H_w \mid w \in Y^*)$, equipped with the ordinary product.

From Corollary 2, we deduce then

PROPOSITION 3. The map $H : u \mapsto H_u$ is an isomorphism from $(R\langle Y \rangle, \sqcup)$ to the algebra $\mathcal{H}_{\mathbb{R}}$.

Since Lyndon(Y) generate freely the shuffle algebra then

COROLLARY 3. Any harmonic sum in $\mathcal{H}_{\mathbb{R}}$ can be decomposed, uniquely, as a polynomial on the series H_l , for $l \in \text{Lyndon}(Y)$, i.e. $\mathcal{H}_{\mathbb{R}} \simeq \mathbb{R}[H_l; l \in \text{Lyndon}(Y)]$.

LEMMA 4. Any $l \in \text{Lyndon}(Y)$ is convergent if and only if $l \neq y_1$. Any convergent polynomial can be decomposed uniquely as shuffle of convergent Lyndon words.

PROOF. By definition, a Lyndon word l is strictly smaller (for lexicographic order) than any of its proper right factors. So, if $l = y_1 u$, with $u \in Y^*$, we have $y_1 u < u$ which is impossible (remind that y_1 is the greatest letter of Y). Thus, the only Lyndon word beginning by y_1 is y_1 itself, and our first statement is proved.

The second one is based on the remark : if y_1 appears as a factor (for \sqcup) in the Radford decomposition of w , then this word begins by y_1 . Since a convergent polynomial contains convergent terms, which do not begin by y_1 , the statement is proved. \square

PROPOSITION 4. Every harmonic sum $H_w \in \mathcal{H}_{\mathbb{R}}$ can be decomposed in a unique way in a univariate polynomial in H_1 , with coefficients in the convergent harmonic sums. This can also be expressed as follows :

$$\mathcal{H}_{\mathbb{R}} \simeq \mathcal{H}_{\mathbb{R}}^0[H_1],$$

where $\mathcal{H}_{\mathbb{R}}^0$ is defined as the \mathbb{R} -algebra generated by the functions H_w , for all convergent words $w \in C^0$.

EXAMPLE – The Radford decomposition gives, in Lyndon basis, $y_1 y_4 y_2 = y_1 \sqcup y_4 y_2 - y_5 y_2 - y_4 y_1 y_2 - y_4 y_2 y_1 - y_4 y_3$. Thus, $H_{1,4,2} = H_1 H_{4,2} - H_{5,2} - H_{4,1,2} - H_{4,2,1} - H_{4,3}$. \square

By Proposition 3, we deduce $\ker H = \{0\}$. In other words,

PROPOSITION 5. The harmonic sums H_w , for $w \in Y^*$ are \mathbb{R} -linearly independent.

4. ASYMPTOTIC EXPANSIONS

We are going to construct a recursive algorithm to find the asymptotic expansion of H_w . For that, considering any real sequence $\{s_n\}_{n \in \mathbb{N}}$, we will define $\text{AS}_q(s_n)$ as the asymptotic expansion up to order q of s_n , i.e. so that

$$s_n - \text{AS}_q(s_n) = O(n^{-q}).$$

4.1 Euler Mac-Laurin formula

Let $\{B_n\}_{n \in \mathbb{N}}$ be the set of Bernoulli numbers obtained in the expansion of the following series

$$\sum_{n \geq 0} B_n \frac{z^n}{n!} = \frac{z}{\exp(z) - 1} = \frac{z \exp(-z)}{1 - \exp(-z)},$$

and $\{B_n(\cdot)\}_{n \in \mathbb{N}}$ the Bernoulli polynomials defined by

$$\frac{x \exp(tx)}{\exp(x) - 1} = \sum_{n \geq 0} B_n(t) \frac{x^n}{n!}.$$

We need the second form of Euler-Maclaurin summation [11] given by, for all integers q, M, N with $N > M$,

$$\begin{aligned} \sum_{n=M}^N f(n) &= \int_M^N f(x) dx + \frac{f(M) + f(N)}{2} \\ &+ \sum_{j=1}^m \frac{B_{2j}}{(2j)!} \left(f^{(2j-1)}(N) - f^{(2j-1)}(M) \right) + R_{2m} \end{aligned} \quad (18)$$

where $R_m = \frac{1}{(2m+1)!} \int_M^N B_{2m+1}(x - [x]) f^{(2m+1)}(x) dx$.

LEMMA 5 ([1]). *One has*

$$\begin{aligned} H_1(N) &= \log N + \gamma - \sum_{k=1}^{q-1} \frac{B_k}{k} \frac{1}{N^k} + O\left(\frac{1}{N^q}\right) \\ H_r(N) &= \zeta(r) - \frac{1}{(r-1)N^{r-1}} \\ &- \sum_{k=r}^{q-1} \frac{B_{k-r+1}}{k-r+1} \binom{k-1}{r-1} \frac{1}{N^k} + O\left(\frac{1}{N^q}\right), \end{aligned}$$

with $r \geq 2$.

PROOF. With the function $f(x) = x^{-r}$, the summation (18) between $M = 1$ and N gives the expected results. \square

LEMMA 6. *One has, for any integer $q \geq 2$,*

$$\begin{aligned} &\sum_{k=2}^N \frac{\log(k-1)}{k^q} \\ &= K + \frac{\log N}{(1-q)N^{q-1}} - \sum_{i=1}^{\infty} \frac{1}{(1-q)iN^{q-1+i}} \\ &- \sum_{i=q-1}^{\infty} \frac{1}{(q-1)iN^i} + \frac{\log N}{2N^q} - \sum_{i=1}^{\infty} \frac{1}{2iN^{q+i}} \\ &+ \sum_{j=1}^{\infty} \frac{B_{2j}}{(2j)!} (-1)^{2j} \\ &\times \left[-(q)_{2j-1} \frac{\log N}{N^{q+2j-1}} + (q)_{2j-1} \sum_{i=1}^{\infty} \frac{1}{iN^{q+2j-1+i}} + \right. \\ &\left. \sum_{k=0}^{2j-2} \binom{2j-1}{k} (2j-2-k)!(q)_k \sum_{i=0}^{\infty} \frac{(-1)^i (2j-k-2)_i}{i! N^{2j+q-1+i}} \right], \end{aligned}$$

where $K = \sum_{k=2}^{+\infty} \log(k-1)k^{-q}$.

So we deduce the asymptotic expansion up to order $q+2$, which will appear to be very useful afterwards :

$$\begin{aligned} \sum_{k=2}^N \frac{\log(k-1)}{k^q} &= K + \frac{\log(N)}{(1-q)N^{q-1}} - \frac{1}{(q-1)^2 N^{q-1}} \\ &+ \frac{\log(N)}{2N^q} + \frac{1}{qN^q} - \frac{qB_2}{2} \frac{\log(N)}{N^{q+1}} \\ &+ \left(\frac{B_2}{2} - \frac{q^2 - 4q - 3}{2q^2 - 2} \right) \frac{1}{N^{q+1}} + O\left(\frac{1}{N^{q+2}}\right) \end{aligned}$$

with $K = \sum_{k=2}^{+\infty} \log(k-1)k^{-q}$.

PROOF. Let $q > 0$ $f(x) = \log(x)(x+1)^{-q}$. We use the Euler-Maclaurin summation (18) from $M = 1$ to $N - 1$, which leads us to calculate each term involved in this sum :

$$\begin{aligned} \int_1^{N-1} \frac{\log(x)}{(x+1)^q} dx &= \frac{\log(N-1)}{(1-q)N^{q-1}} + \frac{\log(N-1)}{q-1} \\ &+ \frac{1}{1-q} \log\left(\frac{N}{2}\right) \\ &+ \frac{1}{q-1} \sum_{j=1}^{q-2} \frac{1}{j} \left(\frac{1}{N^j} - \frac{1}{2^j} \right) \\ \frac{f(1) + f(N-1)}{2} &= \frac{\log(N-1)}{2N^q}, \\ f^{(2j-1)}(x) &= \sum_{k=0}^{2j-2} \binom{2j-1}{k} \frac{(2j-2-k)!(q)_k}{x^{2j-k-1}(x+1)^{q+k}} \\ &- (q)_{2j-1} \frac{\log(x)}{(x+1)^{q+2j-1}}. \end{aligned}$$

where $(s)_k = \Gamma(s+k)/\Gamma(s)$ for $k \in \mathbb{N}$.

We just need to insert the previous terms in the summation (18), expand $\log(N-1)$, and make $m \rightarrow \infty$. \square

4.2 Taylor algorithm

By Theorem 1, any $w \in Y^*$ can be expressed as follows,

$$w = \sum_{k=0}^{|w|} c_k(w) \uplus \frac{y_1^{\uplus k}}{k!}. \quad (19)$$

We want to calculate the convergent polynomials $c_k(w) \in C^0$. For that, let $D : R\langle Y \rangle \rightarrow R\langle Y \rangle$ be the linear application defined, for each $p \in R\langle Y \rangle$ and for each word $w \in Y^*$ by the duality

$$(Dp|w) = (p|y_1 w). \quad (20)$$

In particular, $Dw = 0$ when w is convergent and $D(y_1 w) = w$ for each word $w \in Y^*$. We can prove that D is a derivation for the shuffle product \uplus .

In the following sequence, all *products* and *powers* will be carried out with the shuffle product \uplus .

PROPOSITION 6. *Let $w \in Y^*$, a word of length $|w|$. Then the polynomials $c_k(w)$ are given by*

$$c_k(w) = \sum_{i=0}^{|w|-k} \frac{(-y_1)^i D^i}{i!} D^k(w).$$

Since $D^k w = 0$ as soon as $k > |w|$, this formula can be summered as follows :

$$c_k(w) = e^{-y_1 D} D^k(w)$$

with the convention $\exp(-y_1 D) = \sum_{i \geq 0} (-y_1)^i D^i / i!$, i.e. by making D and y_1 commute.

PROOF. For a polynomial $p \in \mathbb{R}[X]$ of degree l , the Taylor expansion is finite, and given by

$$p(x) = p(y) + Dp(y)(x - y) + \cdots + \frac{D^l p(y)}{l!} (x - y)^l.$$

So, taking $x = 0$, $y = y_1$, $p = D^k(w)$, we find

$$c_k(w) = D^k(w) - D D^k(w)y_1 + \cdots + \frac{D^l}{l!} D^k(w)(-y_1)^l.$$

□

EXAMPLE – Let $w = y_1 y_4 y_2$. Note that $D(w) = y_4 y_2$ and so that $D^k(w) = 0$, for $k \geq 2$. By using Proposition 6,

$$\begin{aligned} c_0 &= \sum_{i=0}^3 \frac{(-y_1)^i D^i}{i!} (y_1 y_4 y_2) = y_1 y_4 y_2 - y_1 \uplus y_4 y_2 \\ &= -y_4 y_1 y_2 - y_4 y_2 y_1 - y_4 y_3 - y_5 y_2 \\ c_1 &= \sum_{i=0}^2 \frac{(-y_1)^i D^i}{i!} (y_4 y_2) = y_4 y_2 \\ c_k &= 0 \text{ for } k \geq 2 \end{aligned}$$

So we get $y_1 y_4 y_2 = c_0 + c_1 \uplus y_1 = -y_4 y_1 y_2 - y_4 y_2 y_1 - y_4 y_3 - y_5 y_2 + y_4 y_2 \uplus y_1$. Note that, in this case, Taylor algorithm gives directly the Radford decomposition. □

4.3 Algorithm for asymptotic expansions

We now are going to use both previous tools (Euler Mac-Laurin formula and Taylor algorithm) to get an asymptotic expansion of H_w up to order q , in the scale of functions $\{N^{-\beta} \log^\alpha N, \alpha \in \mathbb{N}, \beta \in \mathbb{N}\}$. This means that we are looking for a polynomial $p \in \mathbb{R}[X, Y]$ verifying

$$H_w(N) = p(\log N, N^{-1}) + O(N^{-q}). \quad (21)$$

Lemma 2 and Lemma 3 give us the following algorithm.

We use the notation $\mathbf{AE}_q(H_w(N))$ for the asymptotic expansion of $H_w(N)$ up to order q .

In a first time, we store the table of the asymptotic expansions, for $w \in \text{Lyndon}(Y)$. For this, we proceed by recurrence on the length of w .

- If $w = y_s$, then $\mathbf{AE}_q(H_w(N)) = \mathbf{AS}_q(H_w(N))$, an expansion which is already known by Lemma 5, and so can be stored.
- We assume all expansions for Lyndon words of length lower or equal to L are stored. We then consider a Lyndon word of length $L+1$, $w = y_s u$. We know from Lemma 2 that the expansion of H_w is linked to the one of H_u by

$$\mathbf{AE}_q(H_w(N)) = \zeta(w) - \mathbf{AS}_q \left(\sum_{i=N+1}^{\infty} \frac{\mathbf{AE}_{q-s+1}(H_u(i-1))}{i^s} \right).$$

So, there are two possibilities

- ▷ If $u \in \text{Lyndon}(Y)$ then $\mathbf{AE}_{q-s+1}(H_u(i-1))$ is assumed to be stored.
- ▷ If $u \notin \text{Lyndon}(Y)$, with the Radford decomposition, we write u as finite sum of terms $t = c l_1 \uplus \cdots \uplus l_r$, where $c \in \mathbb{Q}$, $l_i \in \text{Lyndon}$, with

$$\mathbf{AE}_{q-s+1}(H_t(i-1)) = c \prod_{p=1}^r \mathbf{AE}_{q-s+1}(H_{l_p}(i-1)).$$

In a second time, if $w \notin \text{Lyndon}(Y)$, as before, we use Radford decomposition and the table of the asymptotic expansion for the Lyndon words.

EXAMPLE – Let $l = y_4 y_2 \in \text{Lyndon}(Y)$. By Lemma 2,

$$H_{4,2}(N) = \zeta(4, 2) - \sum_{i=N+1}^{\infty} \frac{H_2(i-1)}{i^4},$$

But $H_2(i-1) = \zeta(2) - \frac{1}{i} - \frac{1}{2} \frac{1}{i^2} + O\left(\frac{1}{i^3}\right)$, so

$$\begin{aligned} H_{4,2}(N) &= \zeta(4, 2) - \zeta(2) \sum_{i=N+1}^{\infty} \frac{1}{i^4} + \sum_{i=N+1}^{\infty} \frac{1}{i^5} \\ &+ \frac{1}{2} \sum_{i=N+1}^{\infty} \frac{1}{i^6} + \sum_{i=N+1}^{\infty} O\left(\frac{1}{i^7}\right) \end{aligned}$$

Expanding the sums in N , we finally find

$$\begin{aligned} H_{4,2}(N) &= \zeta(4, 2) - \frac{1}{3} \frac{\zeta(2)}{N^3} + \frac{\frac{1}{2} \zeta(2) + \frac{1}{4}}{N^4} \\ &- \frac{\frac{1}{3} \zeta(2) + \frac{2}{5}}{N^5} + O\left(\frac{1}{N^6}\right). \end{aligned}$$

□

EXAMPLE – Let $l = y_1 y_4 y_2 \notin \text{Lyndon}(Y)$. The Radford decomposition of l is given by $l = y_1 \uplus y_4 y_2 - y_5 y_2 - y_4 y_1 y_2 - y_4 y_2 y_1 - y_4 y_3$. Using our algorithm, we find :

$$\begin{aligned} H_{1,4,2}(N) &= \log(N) \zeta(4, 2) - \zeta(4, 1, 2) + \gamma \zeta(4, 2) \\ &- \zeta(5, 2) - \zeta(4, 2, 1) - \zeta(4, 3) \\ &+ \frac{1}{2} \frac{\zeta(4, 2)}{N} - \frac{1}{12} \frac{\zeta(4, 2)}{N^2} + \frac{1}{9} \frac{\zeta(2)}{N^3} \\ &+ \frac{-\frac{1}{24} \zeta(2) - \frac{1}{16} + \frac{1}{120} \zeta(4, 2)}{N^4} + O\left(\frac{1}{N^5}\right) \end{aligned}$$

Thanks to the table giving the relations between MZV up to weight 16¹ [7], we have the following identities

$$\begin{aligned} \zeta(4, 2) &= \zeta(3)^2 - \frac{32}{105} \zeta(2)^3 \\ \zeta(4, 1, 2) &= \frac{5}{8} \zeta(7) + \frac{5}{2} \zeta(2) \zeta(5) - \frac{3}{2} \zeta(2)^2 \zeta(3) \\ \zeta(5, 2) &= -11 \zeta(7) + 5 \zeta(2) \zeta(5) + \frac{4}{5} \zeta(2)^2 \zeta(3) \\ \zeta(4, 2, 1) &= -\frac{221}{16} \zeta(7) + \frac{11}{2} \zeta(2) \zeta(5) + \frac{7}{5} \zeta(2)^2 \zeta(3) \\ \zeta(4, 3) &= 17 \zeta(7) - 10 \zeta(2) \zeta(5), \end{aligned}$$

So, we deduce the reduced form of the previous expansion

$$\begin{aligned} H_{1,4,2}(N) &= \log(N) (\zeta(3)^2 - \frac{32}{105} \zeta(2)^3) - \frac{32}{105} \gamma \zeta(2)^3 \\ &+ \gamma \zeta(3)^2 - 3 \zeta(2) \zeta(5) - \frac{7}{10} \zeta(2)^2 \zeta(3) \\ &+ \frac{115}{16} \zeta(7) + \frac{1}{2} \frac{\zeta(3)^2 - \frac{32}{105} \zeta(2)^3}{N} \\ &- \frac{1}{12} \frac{\zeta(3)^2 - \frac{32}{105} \zeta(2)^3}{N^2} + \frac{1}{9} \frac{\zeta(2)}{N^3} \\ &+ \frac{-\frac{1}{24} \zeta(2) - \frac{1}{16} + \frac{1}{120} \zeta(3)^2 - \frac{4}{1575} \zeta(2)^3}{N^4} \\ &+ O\left(\frac{1}{N^5}\right) \end{aligned}$$

□

¹This table is in agreement with the Zagier's dimension conjecture [15] and is available at <http://www.lifl.fr/~petitot/publis/MZV>.

4.4 More examples

$$\begin{aligned} H_{2,1}(N) &= \zeta(3) + \frac{-\ln(N) - 1 - \gamma}{N} \\ &+ \frac{\frac{1}{2}\ln(N) + \frac{1}{2}\gamma + \frac{1}{4}}{N^2} \\ &+ \left(-\frac{1}{6}\gamma - \frac{5}{36} - \frac{1}{6}\ln(N)\right) \frac{1}{N^3} + O\left(\frac{1}{N^4}\right) \end{aligned}$$

$$\begin{aligned} H_{3,1}(N) &= \zeta(3,1) + \frac{-\frac{1}{2}\ln(N) - \frac{1}{4} - \frac{1}{2}\gamma}{N^2} \\ &+ \frac{\frac{1}{2}\ln(N) + \frac{1}{2}\gamma + \frac{1}{6}}{N^3} \\ &+ \left(-\frac{1}{4}\gamma - \frac{7}{48} - \frac{1}{4}\ln(N)\right) \frac{1}{N^4} + O\left(\frac{\ln(N)}{N^5}\right) \end{aligned}$$

$$\begin{aligned} H_{2,1,1}(N) &= \zeta(2,1,1) + \frac{-1 - \frac{1}{2}\gamma^2 + \frac{1}{2}\zeta(2)}{N} \\ &+ \frac{-\ln(N)\gamma - \gamma - \frac{1}{2}\ln^2(N) - \ln(N)}{N} \\ &+ \frac{\frac{1}{4}\ln(N) - \frac{1}{8} + \frac{1}{4}\ln^2(N) + \frac{1}{2}\ln(N)\gamma}{N^2} \\ &+ \frac{-\frac{1}{4}\zeta(2) + \frac{1}{4}\gamma + \frac{1}{4}\gamma^2}{N^2} + \left(-\frac{5}{36}\ln(N)\right. \\ &+ \frac{29}{216} - \frac{5}{36}\gamma - \frac{1}{6}\ln(N)\gamma - \frac{1}{12}\ln^2(N) \\ &+ \frac{1}{12}\zeta(2) - \frac{1}{12}\gamma^2\left.\right) \frac{1}{N^3} + \left(\frac{1}{12}\gamma - \frac{1}{96}\right. \\ &+ \left.\frac{1}{12}\ln(N)\right) \frac{1}{N^4} + O\left(\frac{\ln^2(N)}{N^5}\right) \end{aligned}$$

$$\begin{aligned} H_{4,1}(N) &= \zeta(4,1) + \frac{-\frac{1}{3}\gamma - \frac{1}{3}\ln(N) - \frac{1}{9}}{N^3} \\ &+ \frac{\frac{1}{2}\gamma + \frac{1}{2}\ln(N) + \frac{1}{8}}{N^4} \\ &+ \left(-\frac{3}{20} - \frac{1}{3}\gamma - \frac{1}{3}\ln(N)\right) \frac{1}{N^5} + O\left(\frac{1}{N^6}\right) \end{aligned}$$

$$\begin{aligned} H_{3,2}(N) &= \zeta(3,2) - \frac{1}{2}\frac{\zeta(2)}{N^2} + \frac{\frac{1}{2}\zeta(2) + \frac{1}{3}}{N^3} \\ &+ \frac{-\frac{1}{4}\zeta(2) - \frac{3}{8}}{N^4} + O\left(\frac{1}{N^5}\right) \end{aligned}$$

$$\begin{aligned} H_{3,1,1}(N) &= \zeta(3,1,1) + \left(-\frac{1}{4}(\ln(N))^2 - \frac{1}{4}\ln(N)\right. \\ &- \frac{1}{8} - \frac{1}{2}\ln(N)\gamma - \frac{1}{4}\gamma + \frac{1}{4}\zeta(2) \\ &- \frac{1}{4}\gamma^2\left.\right) \frac{1}{N^2} + \left(-\frac{1}{4}\zeta(2) + \frac{1}{6}\gamma\right. \\ &+ \frac{1}{4}\gamma^2 - \frac{1}{9} + \frac{1}{4}(\ln(N))^2 + \frac{1}{6}\ln(N) \\ &+ \left.\frac{1}{2}\ln(N)\gamma\right) \frac{1}{N^3} + O\left(\frac{\ln^2(N)}{N^4}\right) \end{aligned}$$

$$\begin{aligned} H_{2,2,1}(N) &= \zeta(2,2,1) - \frac{\zeta(2,1)}{N} \\ &+ \frac{\frac{1}{2}\gamma + \frac{1}{2}\zeta(2,1) + \frac{1}{2}\ln(N) + \frac{3}{4}}{N^2} \\ &+ \left(-\frac{19}{36} - \frac{1}{6}\zeta(2,1) - \frac{1}{3}\gamma - 1/3\ln(N)\right) \frac{1}{N^3} \\ &+ \left(\frac{1}{24}\gamma + \frac{61}{288} + \frac{1}{24}\ln(N)\right) \frac{1}{N^4} \\ &+ O\left(\frac{\ln(N)}{N^5}\right) \end{aligned}$$

$$\begin{aligned} H_{2,1,1,1}(N) &= \zeta(2,1,1,1) + \left(-\frac{1}{6}\gamma^3 - \frac{1}{3}\zeta(3)\right. \\ &+ \frac{1}{2}\zeta(2)\gamma + \frac{1}{2}\zeta(2)\ln(N) + \frac{1}{2}\zeta(2) \\ &- \frac{1}{6}\ln(N)^3 - \frac{1}{2}(\ln(N))^2 - 1 - \ln(N) \\ &- \frac{1}{2}(\ln(N))^2\gamma - \ln(N)\gamma - \gamma - \frac{1}{2}\ln(N)\gamma^2 \\ &- \frac{1}{2}\gamma^2\left.\right) \frac{1}{N} + \left(-\frac{1}{4}\zeta(2)\gamma + \frac{1}{12}\gamma^3 + \frac{1}{8}\gamma^2\right. \\ &- \frac{1}{8}\zeta(2) + \frac{1}{12}\ln(N)^3 - \frac{1}{8}\ln(N) - \frac{1}{16} \\ &+ \frac{1}{4}\ln(N)^2\gamma + \frac{1}{4}\ln(N)\gamma - \frac{1}{8}\gamma \\ &- \frac{1}{4}\zeta(2)\ln(N) + \frac{1}{4}\ln(N)\gamma^2 + \frac{1}{8}\ln(N)^2 \\ &+ \left.\frac{1}{6}\zeta(3)\right) \frac{1}{N^2} + O\left(\frac{\ln^3(N)}{N^3}\right) \end{aligned}$$

$$\begin{aligned} H_{5,1}(N) &= \zeta(5,1) + \frac{-\frac{1}{4}\gamma - \frac{1}{4}\ln(N) - \frac{1}{16}}{N^4} \\ &+ \frac{\frac{1}{2}\ln(N) + \frac{1}{2}\gamma + 1/10}{N^5} + O\left(\frac{\ln(N)}{N^6}\right) \end{aligned}$$

$$\begin{aligned} H_{4,2}(N) &= \zeta(4,2) - \frac{1}{3}\frac{\zeta(2)}{N^3} + \frac{\frac{1}{4} + \frac{1}{2}\zeta(2)}{N^4} \\ &+ \frac{-2/5 - 1/3\zeta(2)}{N^5} + O\left(\frac{1}{N^6}\right) \end{aligned}$$

$$\begin{aligned} H_{4,1,1}(N) &= \zeta(4,1,1) + \left(\frac{1}{6}\zeta(2) - \frac{1}{6}\ln(N)^2 - \frac{1}{9}\ln(N)\right. \\ &- \frac{1}{27} - \frac{1}{3}\ln(N)\gamma - \frac{1}{9}\gamma - \frac{1}{6}\gamma^2\left.\right) \frac{1}{N^3} \\ &+ O\left(\frac{\ln^2(N)}{N^4}\right) \end{aligned}$$

$$\begin{aligned} H_{3,2,1}(N) &= \zeta(3,2,1) - \frac{1}{2}\frac{\zeta(2,1)}{N^2} + \left(\frac{1}{3}\gamma + \frac{4}{9}\right. \\ &+ \frac{1}{2}\zeta(2,1) + \frac{1}{3}\ln(N)\left.\right) \frac{1}{N^3} + \left(-\frac{17}{32} - \frac{3}{8}\gamma\right. \\ &- \frac{1}{4}\zeta(2,1) - \frac{3}{8}\ln(N)\left.\right) \frac{1}{N^4} + O\left(\frac{\ln(N)}{N^5}\right) \end{aligned}$$

$$\begin{aligned}
H_{3,1,2}(N) &= \zeta(3, 1, 2) + \left(-\frac{1}{2}\zeta(2)\gamma + \frac{1}{2}\zeta(3) \right. \\
&\quad \left. - \frac{1}{2}\zeta(2)\ln(N) - \frac{1}{4}\zeta(2) + \frac{1}{2}\zeta(2, 1) \right) \frac{1}{N^2}
\end{aligned}$$

$$\begin{aligned}
&+ \left(\frac{1}{6}\zeta(2) + \frac{1}{2}\zeta(2)\gamma - \frac{1}{2}\zeta(2, 1) - \frac{1}{3} \right. \\
&\quad \left. - \frac{1}{2}\zeta(3) + \frac{1}{2}\zeta(2)\ln(N) \right) \frac{1}{N^3} + O\left(\frac{\ln(N)}{N^4}\right)
\end{aligned}$$

$$\begin{aligned}
H_{3,1,1,1}(N) &= \zeta(3, 1, 1, 1) + \left(-\frac{1}{4}\ln(N)^2\gamma \right. \\
&\quad \left. - \frac{1}{4}\ln(N)\gamma - \frac{1}{8}\gamma - \frac{1}{4}\ln(N)\gamma^2 - \frac{1}{8}\gamma^2 \right. \\
&\quad \left. - \frac{1}{12}(\ln(N))^3 - \frac{1}{8}\ln(N)^2 - \frac{1}{8}\ln(N) \right. \\
&\quad \left. - \frac{1}{16} + \frac{1}{4}\zeta(2)\ln(N) + \frac{1}{8}\zeta(2) + \frac{1}{4}\zeta(2)\gamma \right. \\
&\quad \left. - \frac{1}{12}\gamma^3 - \frac{1}{6}\zeta(3) \right) \frac{1}{N^2} + O\left(\frac{\ln^3(N)}{N^3}\right)
\end{aligned}$$

$$\begin{aligned}
H_{2,2,1,1}(N) &= \zeta(2, 2, 1, 1) - \frac{\zeta(2, 1, 1)}{N} + \left(\frac{1}{2}\zeta(2, 1, 1) \right. \\
&\quad \left. + \frac{1}{4}\gamma^2 + \frac{3}{4}\gamma + \frac{3}{4}\ln(N) + \frac{7}{8} + \frac{1}{4}(\ln(N))^2 \right. \\
&\quad \left. + \frac{1}{2}\ln(N)\gamma - \frac{1}{4}\zeta(2) \right) \frac{1}{N^2} + O\left(\frac{\ln^2(N)}{N^3}\right)
\end{aligned}$$

$$\begin{aligned}
H_{2,1,1,1,1}(N) &= \zeta(2, 1, 1, 1, 1) + \left(-1 - \gamma - \frac{1}{2}\gamma^2 \right. \\
&\quad \left. - \frac{1}{24}\ln^4(N) - \frac{1}{2}\ln^2(N) - \frac{1}{24}\gamma^4 \right. \\
&\quad \left. + \frac{1}{8}\zeta(4) - \frac{1}{3}\zeta(3) - \frac{1}{2}\ln^2(N)\gamma \right. \\
&\quad \left. - \frac{1}{2}\ln(N)\gamma^2 - \frac{1}{3}\zeta(3)\ln(N) - \frac{1}{3}\zeta(3)\gamma \right. \\
&\quad \left. + \frac{1}{2}\zeta(2) + \frac{1}{2}\zeta(2)\gamma - \frac{1}{6}\gamma^3 - \frac{1}{6}\ln^3(N) \right. \\
&\quad \left. + \frac{1}{4}\zeta(2)\ln^2(N) - \frac{1}{6}\ln(N)\gamma^3 \right. \\
&\quad \left. - \frac{1}{4}\ln(N)^2\gamma^2 - \frac{1}{6}\ln(N)^3\gamma \right. \\
&\quad \left. + \frac{1}{2}\zeta(2)\ln(N)\gamma + \frac{1}{4}\zeta(2)\gamma^2 \right. \\
&\quad \left. + \frac{1}{2}\zeta(2)\ln(N) - \ln(N) - \frac{1}{4}\zeta(2, 2) \right. \\
&\quad \left. - \ln(N)\gamma \right) \frac{1}{N} + O\left(\frac{\ln^4(N)}{N^2}\right)
\end{aligned}$$

$$\begin{aligned}
H_{6,1}(N) &= \zeta(6, 1) + \frac{-\frac{1}{5}\ln(N) - \frac{1}{25} - 1/5\gamma}{N^5} \\
&\quad + \frac{\frac{1}{2}\ln(N) + \frac{1}{12} + \frac{1}{2}\gamma}{N^6} \\
&\quad + \left(-\frac{1}{2}\gamma - \frac{13}{84} - \frac{1}{2}\ln(N) \right) \frac{1}{N^7} + O\left(\frac{\ln(N)}{N^8}\right)
\end{aligned}$$

$$\begin{aligned}
H_{5,2}(N) &= \zeta(5, 2) - \frac{1}{4}\frac{\zeta(2)}{N^4} + \frac{\frac{1}{2}\zeta(2) + \frac{1}{5}}{N^5} \\
&\quad + \frac{-\frac{5}{12} - \frac{5}{12}\zeta(2)}{N^6} + \frac{\frac{23}{84}}{N^7} + O\left(\frac{1}{N^8}\right)
\end{aligned}$$

$$\begin{aligned}
H_{5,1,1}(N) &= \zeta(5, 1, 1) + \left(-\frac{1}{4}\ln(N)\gamma - \frac{1}{16}\gamma \right. \\
&\quad \left. - \frac{1}{8}\ln^2(N) - \frac{1}{16}\ln(N) - \frac{1}{64} - \frac{1}{8}\gamma^2 \right. \\
&\quad \left. + \frac{1}{8}\zeta(2) \right) \frac{1}{N^4} + O\left(\frac{\ln^2(N)}{N^5}\right)
\end{aligned}$$

$$\begin{aligned}
H_{4,3}(N) &= \zeta(4, 3) - \frac{1}{3}\frac{\zeta(3)}{N^3} + \frac{1}{2}\frac{\zeta(3)}{N^4} + \frac{-\frac{1}{3}\zeta(3) + 1/10}{N^5} \\
&\quad - \frac{\frac{1}{6}}{N^6} + \frac{\frac{1}{28} + \frac{1}{6}\zeta(3)}{N^7} + O\left(\frac{1}{N^8}\right)
\end{aligned}$$

$$\begin{aligned}
H_{4,2,1}(N) &= \zeta(4, 2, 1) - \frac{1}{3}\frac{\zeta(2, 1)}{N^3} + \left(\frac{1}{4}\gamma + \frac{1}{2}\zeta(2, 1) \right. \\
&\quad \left. + \frac{5}{16} + \frac{1}{4}\ln(N) \right) \frac{1}{N^4} + \left(-2/5\gamma - \frac{53}{100} \right. \\
&\quad \left. - 2/5\ln(N) - \frac{1}{3}\zeta(2, 1) \right) \frac{1}{N^5} + O\left(\frac{\ln(N)}{N^6}\right)
\end{aligned}$$

$$\begin{aligned}
H_{4,1,2}(N) &= \zeta(4, 1, 2) + \left(-\frac{1}{3}\zeta(2)\ln(N) - \frac{1}{9}\zeta(2) \right. \\
&\quad \left. + \frac{1}{3}\zeta(3) - \frac{1}{3}\zeta(2)\gamma + \frac{1}{3}\zeta(2, 1) \right) \frac{1}{N^3} \\
&\quad + O\left(\frac{\ln(N)}{N^4}\right)
\end{aligned}$$

$$\begin{aligned}
H_{4,1,1,1}(N) &= \zeta(4, 1, 1, 1) + \left(-\frac{1}{9}\zeta(3) - \frac{1}{18}\gamma^3 \right. \\
&\quad \left. + \frac{1}{6}\zeta(2)\gamma - \frac{1}{6}\ln^2(N)\gamma - \frac{1}{9}\ln(N)\gamma - \frac{1}{27}\gamma \right. \\
&\quad \left. - \frac{1}{18}\ln^3N - \frac{1}{18}(\ln(N))^2 - \frac{1}{27}\ln(N) \right. \\
&\quad \left. - \frac{1}{81} + \frac{1}{6}\zeta(2)\ln(N) + \frac{1}{18}\zeta(2) - \frac{1}{6}\ln(N)\gamma^2 \right. \\
&\quad \left. - \frac{1}{18}\gamma^2 \right) \frac{1}{N^3} + O\left(\frac{\ln^3(N)}{N^3}\right)
\end{aligned}$$

5. ACKNOWLEDGMENTS

Thanks to Boutet de Monvel, Cartier, Jacob and Waldschmidt for useful discussions.

6. REFERENCES

- [1] F. Bergeron, G. Labelle, P. Leroux.– *Combinatorial Species and Tree-like Structures*, Encyclopedia of Mathematics and its Applications, Vol. 67, Cambridge University Press (1998).
- [2] M. Bigotte.– *Etude symbolique et algorithmique des polylogarithmes et des nombres Euler-Zagier colors*, Ph.D., Lille, (2000).

- [3] J. Blümlein.– *Mathematical Structure of Anomalous Dimensions and QCD Wilson Coefficients in Higher Order*, Nuclear Physics B (Proc Suppl.), 135, pp 225-231, (2004).
- [4] C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh.– *Algorithmic and combinatoric aspects of multiple harmonic sums*, in the proceedings of AofA, Barcelone, 6-10 June, (2005).
- [5] P. Flajolet, G. Labelle, L. Laforest, B. Salvy.– *Hypergeometrics and the Cost Structure of Quadtrees*, Random Structures and Algorithms, Vol. 7, No.2, pp 117-144, (1995).
- [6] Hoang Ngoc Minh.– *Finite polyzetas, Poly-Bernoulli numbers, identities of polyzetas and noncommutative rational power series*, proc. of 4th Int. Conf. on Words, pp. 232-250, September, 10-13 Turku, Finland, (2003).
- [7] Hoang Ngoc Minh & M. Petitot.– *Lyndon words, polylogarithmic functions and the Riemann ζ function*, Discrete Math., 217, pp. 273-292, (2000).
- [8] Hoang Ngoc Minh, M. Petitot & J. van der Hoeven.– *L'algbre des polylogarithmes par les sries gnratrices*, SFCA'99, Barcelone, (1999).
- [9] Hoang Ngoc Minh, M. Petitot & J. van der Hoeven.– *Shuffle algebra and polylogarithms*, Discrete Mathematics, 225, pp 217-230, (2000).
- [10] M. Hoffman.– *The algebra of multiple harmonic series*, Jour. of Alg., August (1997).
- [11] A. Ivić.– *The Riemann zeta function*, J. Wiley, New York, (1985).
- [12] C. Reutenauer.– *Free Lie Algebras*, Lon. Math. Soc. Mono., New Series-7, Oxford Sc. Pub., (1993).
- [13] V.N. Sorokin.– *On the linear independence of the values of generalized polylogarithms*, Math. Sb., 192:8, pp. 139–154, (2001); English transl, Sb. Math. 192, pp 1225–1239, (2001).
- [14] E.A. Ulanskii.– *Identities for generalized polylogarithms*, Mat. Zametki, 73, pp. 613–624; English transl, Math. Notes, 73, pp 571–581, (2003).
- [15] D. Zagier.– *Values of zeta functions and their applications*, First European congress of Mathematics, Vol.2, Birkhäuser, Basel, 1994, pp. 497-512.