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ABSTRACT
We prove that the algebra of multiple harmonic sums is iso-
morphic to a shuffle algebra. So the multiple harmonic sums
{Hs}, indexed by the compositions s = (s1, · · · , sr), are R-
linearly independent as real functions defined over N. We
deduce then the algorithm to obtain the asymptotic expan-
sion of multiple harmonic sums.

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Combinatorics—combi-
natorial algorithms, generating functions

General Terms
Algorithms, Languages

Keywords
Polylogarithms, multiple harmonic sums, Lyndon words,
polyzêtas

1. INTRODUCTION
Let N>0 be the set of positive integers. The harmonic

sums

Hs(N) =

NX
n=1

1

ns
, (s ∈ N>0, N ∈ N>0) (1)

can be generalized to any composition s of length r ≥ 0, i.e.
a sequence of positive integers s = (s1, . . . , sr) by putting

Hs(N) =
X

N≥n1>···>nr>0

1

n1
s1 . . . nr

sr
(2)
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with the convention Hs(N) ≡ 1 when s is the empty com-
position.

It can be proved that the limit

ζ(s) = lim
N → ∞

Hs(N) (3)

exists if and only if the composition s is empty or if s1 6= 1.
In this case, we will say that s is a convergent composi-
tion. The values ζ(s) are called ”Multiple Zeta Values”
(MZV). Harmonic sums and MZV arise in high-energy par-
ticule physics [3] and in analysis of algorithms [5].

We consider the R-vector space HR generated by the Hs,
seen as functions from N to R. The theory of quasi-
symmetric functions shows that the {Hs(N)}s satisfy shuffle
relations. In particular, the product of two harmonic func-
tions is a sum of harmonic functions : for all a, b ∈ N>0, we
have

Ha(N) ·Hb(N) = Ha,b(N) + Hb,a(N) + Ha+b(N). (4)

So, the vector-space HR is closed under product. The main
result of this article is to prove that in HR, the functions
{Hs}s are linearly independent. As a consequence, HR
appears to be isomorphic to some shuffle algebra noted�
R〈Y 〉,

�
. The structure of this algebra is well known

and Hoffman showed that it is freely generated by Lyndon
words on the alphabet Y .

Let H0
R be the R-algebra generated by the functions Hs

when s describes the set of all convergent compositions. We
show that

HR ' H0
R[H1] (5)

i.e. that any harmonic function can be decomposed uniquely
in a univariate polynomial, on the sums H1(N) =

PN
n=1 n−1.

This decomposition is obtained thanks to a variant of
Taylor expansion for univariate polynomials, by defining a
derivation D in the shuffle algebra

�
R〈Y 〉,

�
. In fact,

this decomposition provides an asymptotic expansion, up to
order 0, of Hs(N) as N → ∞. We can then deduce an as-
ymptotic expansion, up to any order, by using the second
form of the Euler-Mac Laurin summation formula.

Our result of linear independance of the functions Hs lies
on the C-linear independance of the polylogarithm functions



(z is a complex number so that |z| < 1)

Lis(z) =
X

n1>···>nl>0

zn1

ns1
1 · · ·nsl

l

, (6)

first proved in [9], then resumed in [13, 14]. In this article,
harmonic functions are seen as Taylor coefficients

1

1− z
Lis(z) =

∞X
N=0

Hs(N)zN . (7)

By using the combinatorics developed by M. Bigotte in [2],
it is possible to consider a similar generalization for the har-
monic sums related to coloured MZV

ζ(ξ1,...,ξl
s1,...,sl

) =
X

n1>···>nl>0

ξ1
n1 . . . ξl

nl

n1
s1 . . . nl

sl
, (8)

where ξ1, . . . , ξl are roots of unity.

2. BACKGROUND

2.1 How to shuffle?
We consider the non commutative alphabet Y = {yn |

n ∈ N>0}. As usual, the set of all words over Y is denoted
Y ∗ and the empty word is denoted ε. The length of the
word w is denoted |w| and the word w resulting from the
concatenation of two words u and v is the word w = uv.

Let R be a commutative ring containing Q. A polynomial
p ∈ R〈Y 〉 is a linear combination of words, with coefficients
in R. The coefficient of the word w in polynomial p is noted
(p|w) and therefore

p =
X

w∈Y ∗

(p|w)w, (p|w) ∈ R. (9)

The concatenation product for words is extended to polyno-
mials by linearity.

The shuffle product of two words u = yiu
′ and v = yjv

′

in Y ∗ is recursively defined by ε w = w, for all w ∈ Y ∗

and

u v = yi(u
′ v) + yj(u v′) + yi+j(u

′ v′), (10)

with i, j ∈ N>0 and u′, v′ ∈ Y ∗.
This product is also extended to R〈Y 〉 by linearity. Pro-

vided with this shuffle product, R〈Y 〉 becomes an associative
and commutative R-algebra noted

�
R〈Y 〉,

�
.

We can totally order Y by putting yi < yj if i > j. So y1

is the biggest letter of the alphabet Y . Lexicographic order
is then recursively defined on words w ∈ Y ∗ by�

ε < w for w ∈ Y ∗ \ ε
yiu < yjv if i > j or if i = j and u < v.

A nonempty word w is called a Lyndon word if it is strictly
smaller (for lexicographic order) than any of its proper right
factors, i.e. w < v for any factorization w = uv with u 6= ε
and v 6= ε. Let Lyndon(Y ) denotes the set of Lyndon words
over Y .

Let

C0 = R⊕ (R〈Y 〉 \ y1R〈Y 〉). (11)

Hoffman generalized Radford theorem in the following way

Theorem 1 ([12, 10]). One has

(R〈Y 〉, ) ' (R[Lyndon(Y )], ) = (C0[y1], ).

This means that every polynomial in R〈Y 〉, for shuffle prod-
uct, can be decomposed uniquely in a linear combination of
shuffle products of Lyndon words.

2.2 Quasi monomial functions
Let T = {tn | n ∈ N>0} a countable commutative set.

To each word w = ys1 . . . ysl ∈ Y ∗, we associate the quasi
monomial function

Mw =
X

n1>···>nl>0

ts1
n1 · · · t

sl
nl

, (12)

which is a formal series on the letters tn ∈ T , with coeffi-
cients in N. For the empty word, we define Mε = 1. Thanks
to Gessel works, it is known that the product of quasi mono-
mial functions is a sum of quasi monomial functions. More-
over, we have the following identity between formal series

MuMv = Mu v, (u, v ∈ Y ∗). (13)

2.3 Polylogarithms
Let us associate to any word w = ys1 · · · ysr the polylog-

arithm Liw(z) defined for |z| < 1 by

Liw(z) =
X

n1>···>nr>0

zn1

ns1
1 · · ·nsr

r ,
(14)

for r > 0 and by Liε(z) = 1, for the empty word ε.

Theorem 2 ([9]). The functions Liw, for w ∈ Y ∗, are
C-linearly independent.

In fact, this result can be improved by replacing C by
any algebra of analytic functions defined over C−{0, 1}, for
example C[z, 1/z, 1/(z−1)], and the proof lies on an explicit
evaluation of the monodromy group of Liw.

3. HARMONIC SUMS ALGEBRA

3.1 Harmonic sums

Definition 1. Let w = ys1 . . . ysr ∈ Y ∗. Then, for N ≥
r ≥ 1, the harmonic sum Hw(N) is defined as

Hw(N) =
X

N≥n1>...>nr>0

1

ns1
1 . . . nsr

r

and Hw(N) = 0 for 0 ≤ N < r.

If |w| = 0, we put Hε(N) = 1, for any N ≥ 0.

Lemma 1. Let w = ys1 . . . ysr ∈ Y ∗. The sum Hw(N) is
convergent, when N →∞, if and only if s1 > 1.

In this case, this limit is nothing but the polyzta (or MZV
[15]) ζ(w), and thus, by an Abel’s theorem

lim
N→∞

Hw(N) = ζ(w) = lim
z→1

Liw(z). (15)

Then, the word w is said convergent. A polynomial of R〈Y 〉
is said convergent when it is a linear combination of conver-
gent words.

Lemma 2. For w = ysw
′, we have

Hw(N) =

NX
k=1

Hw′(k − 1)

ks



Corollary 1. For w = ysw
′, we have

ζ(w) =
X
k≥1

Hw′(k − 1)

ls
, (16)

Hw(N + 1)−Hw(N) = (N + 1)−sHw′(N) (17)

Lemma 3 ([10]). For any words u and v, we have

Hu v(N) = Hu(N)Hv(N).

Proof. The harmonic sum Hw(N) can be obtained by
specialization of the quasi-mononial function Mw at ti = 1/i
if 1 ≤ i ≤ N and ti = 0 if i > N . By (13), Hw(N) satisfies
the expected result.

3.2 Generating series

Definition 2 ([6]). For any word w ∈ Y ∗, let Pw be
the ordinary generating series of {Hw(N)}N≥0 :

Pw(z) =
X
N≥0

Hw(N)zN , with Pε(z) =
1

1− z
.

Proposition 1 ([6]). For any word w ∈ Y ∗ and for
any complex number z satisfying |z| < 1, one has

Liw(z) = (1− z)Pw(z).

Proof. Since Pw(z) =
P

N≥0 Hw(N)zN , it is known that

the series expansion of (1− z)Pw(z) is given by

(1− z)Pw(z) = Hw(0) +
X
N≥1

[Hw(N)−Hw(N − 1)]zN .

But, by (17), for w = ys1w′,

Hw(N)−Hw(N − 1) = N−s1Hw′(N − 1),

so

(1− z)Pw(z) = Hw(0) +
X
N≥1

Hw′(N − 1)

Ns1
zN = Liw(z).

Definition 3. The Hadamard product � is a bilinear
function from C[[z]]×C[[z]] to C[[z]] defined, for all integers
n and m,by

zn � zm =

(
zn if n = m,

0 if n 6= m.

Thus,
P∞

n=0 anzn �
P∞

n=0 bnzn =
P∞

n=0 anbnzn.

Proposition 2. For u, v ∈ Y ∗, one has

Pu(z)� Pv(z) = Pu v(z).

Proof. By Lemma 3,
X
N≥0

Hu(N)zN �
X
N≥0

Hv(N)zN =
X
N≥0

Hu(N)Hv(N)zN

=
X
N≥0

Hu v(N)zN .

Corollary 2 ([6]). Extented by linearity, the map
P : u 7→ Pu is an isomorphism from (R〈Y 〉, ) to the
Hadamard algebra of {Pw}w∈Y ∗ .

Proof. Proposition 2 gives P as an algebra morphism
and by Theorem 2, P is the expected isomorphism.

Thanks to the relations existing between Liw(1 − z) and
Liw(z) [8], we can precise the asymptotic behaviour of Liw
in the neighbourhood of 1. For example,

Li2,1,1(1− t) = −Li4(t) + log(t) Li3(t)−
1

2
log(t)2 Li2(t)

+
1

6
log(t)3 Li1(t) +

2

5
ζ(2)2.

So, we find, by formula (14), the expansion of Li2,1,1(1− ε)
and, by dividing it by ε, we find the one of P2,1,1(1− ε) :

P2,1,1(1− ε) =
2

5
ζ(2)2

1

ε
+

1

6
log3 ε− 1

2
log2 ε + log ε

− 1 +
ε

12
log3 ε− ε

8
log2 ε +

ε

8
log ε + O (ε)

From this, we can also deduce the expansion of the Taylor
coefficients of P(z) (see [4]).

3.3 Algebra HR

Definition 4. The algebra HR of harmonic sums is de-
fined as the R-vector space HR = spanR(Hw | w ∈ Y ∗),
equipped with the ordinary product.

From Corollary 2, we deduce then

Proposition 3. The map H : u 7→ Hu is an isomor-
phism from (R〈Y 〉, ) to the algebra HR.

Since Lyndon(Y ) generate freely the shuffle algebra then

Corollary 3. Any harmonic sum in HR can be decom-
posed, uniquely, as a polynomial on the series Hl, for l ∈
Lyndon(Y ), i.e. HR ' R[Hl; l ∈ Lyndon(Y )].

Lemma 4. Any l ∈ Lyndon(Y ) is convergent if and only
if l 6= y1. Any convergent polynomial can be decomposed
uniquely as shuffle of convergent Lyndon words.

Proof. By definition, a Lyndon word l is strictly smaller
(for lexicographic order) than any of its proper right factors.
So, if l = y1u, with u ∈ Y ∗, we have y1u < u which is
impossible (remind that y1 is the greatest letter of Y ). Thus,
the only Lyndon word beginning by y1 is y1 itself, and our
first statement is proved.

The second one is based on the remark : if y1 appears as a
factor (for ) in the Radford decomposition of w, then this
word begins by y1. Since a convergent polynomial contains
convergent terms, which do not begin by y1, the statement
is proved.

Proposition 4. Every harmonic sum Hw ∈ HR can be
decomposed in a unique way in a univariate polynomial in
H1, with coefficients in the convergent harmonic sums. This
can also be expressed as follows :

HR ' H0
R[H1],

where H0
R is defined as the R-algebra generated by the func-

tions Hw, for all convergent words w ∈ C0.

Example – The Radford decomposition gives, in Lyndon
basis, y1y4y2 = y1 y4y2 − y5y2 − y4y1y2 − y4y2y1 − y4y3.
Thus, H1,4,2 = H1H4,2 −H5,2 −H4,1,2 −H4,2,1 −H4,3. �

By Proposition 3, we deduce kerH = {0}. In other words,

Proposition 5. The harmonic sums Hw, for w ∈ Y ∗ are
R-linearly independent.



4. ASYMPTOTIC EXPANSIONS
We are going to construct a recursive algorithm to find the

asymptotic expansion of Hw. For that, considering any real
sequence {sn}n∈N, we will define ASq

�
sn

�
as the asymptotic

expansion up to order q of sn, i.e. so that

sn − ASq(sn) = O(n−q).

4.1 Euler Mac-Laurin formula
Let {Bn}n∈N be the set of Bernoulli numbers obtained in

the expansion of the following seriesX
n≥0

Bn
zn

n!
=

z

exp(z)− 1
=

z exp(−z)

1− exp(−z)
,

and {Bn(·)}n∈N the Bernoulli polynomials defined by

x exp(tx)

exp(x)− 1
=
X
n≥0

Bn(t)
xn

n!
.

We need the second form of Euler-Maclaurin summation [11]
given by, for all integers q, M , N with N > M ,

NX
n=M

f(n) =

Z N

M
f(x)dx +

f(M) + f(N)

2

+

mX
j=1

B2j

(2j)!

�
f (2j−1)(N)− f (2j−1)(M)

�
+ R2m (18)

where Rm =
1

(2m + 1)!

Z N

M

B2m+1(x− [x])f (2m+1)(x)dx.

Lemma 5 ([1]). One has

H1(N) = log N + γ −
q−1X
k=1

Bk

k

1

Nk
+ O

�
1

Nq

�

Hr(N) = ζ(r)− 1

(r − 1)Nr−1

−
q−1X
k=r

Bk−r+1

k − r + 1

 
k − 1

r − 1

!
1

Nk
+ O

�
1

Nq

�
,

with r ≥ 2.

Proof. With the function f(x) = x−r, the summation
(18) between M = 1 and N gives the expected results.

Lemma 6. One has, for any integer q ≥ 2,

NX
k=2

log(k − 1)

kq

= K +
log N

(1− q)Nq−1
−

∞X
i=1

1

(1− q)iNq−1+i

−
∞X

i=q−1

1

(q − 1)iN i
+

log N

2Nq
−

∞X
i=1

1

2iNq+i

+

∞X
j=1

B2j

(2j)!
(−1)2j

×
�
−(q)2j−1

log N

Nq+2j−1
+ (q)2j−1

∞X
i=1

1

iNq+2j−1+i
+

2j−2X
k=0

�2j − 1

k

�
(2j − 2− k)!(q)k

∞X
i=0

(−1)i(2j − k − 2)i

i!N2j+q−1+i

�
,

where K =
P+∞

k=2 log(k − 1)k−q.

So we deduce the asympotic expansion up to order q + 2,
which will appear to be very useful afterwards :

NX
k=2

log(k − 1)

kq
= K +

log(N)

(1− q)Nq−1
−

1

(q − 1)2Nq−1

+
log(N)

2Nq
+

1

qNq
−

qB2

2

log(N)

Nq+1

+

�
B2

2
−

q2 − 4q − 3

2q2 − 2

�
1

Nq+1
+ O

�
1

Nq+2

�

with K =
P+∞

k=2 log(k − 1)k−q.

Proof. Let q > 0 f(x) = log(x)(x + 1)−q. We use the
Euler-Maclaurin summation (18) from M = 1 to N − 1,
which leads us to calculate each term involved in this sum :Z N−1

1

log(x)

(x + 1)q
dx =

log(N − 1)

(1− q)Nq−1
+

log(N − 1)

q − 1

+
1

1− q
log

�
N

2

�

+
1

q − 1

q−2X
j=1

1

j

�
1

N j
− 1

2j

�
f(1) + f(N − 1)

2
=

log(N − 1)

2Nq
,

f (2j−1)(x) =

2j−2X
k=0

 
2j − 1

k

!
(2j − 2− k)!(q)k

x2j−k−1(x + 1)q+k

− (q)2j−1
log(x)

(x + 1)q+2j−1
.

where (s)k = Γ(s + k)/Γ(s) for k ∈ N.
We just need to insert the previous terms in the summation
(18), expand log(N − 1), and make m →∞.

4.2 Taylor algorithm
By Theorem 1, any w ∈ Y ∗ can be expressed as follows,

w =

|w|X
k=0

ck(w)
y k
1

k!
. (19)

We want to calculate the convergent polynomials ck(w) ∈
C0. For that, let D : R〈Y 〉 → R〈Y 〉 be the linear application
defined, for each p ∈ R〈Y 〉 and for each word w ∈ Y ∗ by the
duality

(Dp|w) = (p|y1w). (20)

In particular, Dw = 0 when w is convergent and D(y1w) =
w for each word w ∈ Y ∗. We can prove that D is a derivation
for the shuffle product .

In the following sequence, all products and powers will be
carried out with the shuffle product .

Proposition 6. Let w ∈ Y ∗, a word of length |w|. Then
the polynomials ck(w) are given by

ck(w) =

|w|−kX
i=0

(−y1)
iDi

i!
Dk(w).

Since Dkw = 0 as soon as k > |w|, this formula can be
summered as follows :

ck(w) = e−y1DDk(w)

with the convention exp(−y1D) =
P

i≥0 (−y1)
iDi/i!, i.e. by

making D and y1 commute.



Proof. For a polynomial p ∈ R[X] of degree l, the Taylor
expansion is finite, and given by

p(x) = p(y) + Dp(y)(x− y) + · · ·+ Dlp(y)

l!
(x− y)l.

So, taking x = 0, y = y1, p = Dk(w), we find

ck(w) = Dk(w)−D Dk(w)y1 + · · ·+ Dl

l!
Dk(w)(−y1)

l.

Example – Let w = y1y4y2. Note that D(w) = y4y2 and
so that Dk(w) = 0, for k ≥ 2. By using Proposition 6,

c0 =

3X
i=0

(−y1)
iDi

i!
(y1y4y2) = y1y4y2 − y1 y4y2

= −y4y1y2 − y4y2y1 − y4y3 − y5y2

c1 =

2X
i=0

(−y1)
iDi

i!
(y4y2) = y4y2

ck = 0 for k ≥ 2

So we get y1y4y2 = c0+c1 y1 = −y4y1y2−y4y2y1−y4y3−
y5y2 + y4y2 y1. Note that, in this case, Taylor algorithm
gives directly the Radford decomposition. �

4.3 Algorithm for asymptotic expansions
We now are going to use both previous tools (Euler Mac-

Laurin formula and Taylor algorithm) to get an asymptotic
expansion of Hw up to order q, in the scale of functions
{N−β logα N, α ∈ N, β ∈ N}. This means that we are look-
ing for a polynomial p ∈ R[X, Y ] verifying

Hw(N) = p(log N, N−1) + O(N−q). (21)

Lemma 2 and Lemma 3 give us the following algorithm.
We use the notation AEq(Hw(N)) for the asymptotic ex-

pansion of Hw(N) up to order q.
In a first time, we store the table of the asymptotic ex-

pansions, for w ∈ Lyndon(Y ). For this, we proceed by re-
currence on the length of w.

• If w = ys, then AEq(Hw(N)) = ASq(Hw(N)), an expan-
sion which is already known by Lemma 5, and so can
be stored.

• We assume all expansions for Lyndon words of length
lower or equal to L are stored. We then consider a
Lyndon word of length L+1, w = ysu. We know from
Lemma 2 that the expansion of Hw is linked to the one
of Hu by

AEq(Hw(N)) = ζ(w)− ASq

� ∞X
i=N+1

AEq−s+1(Hu(i− 1))

is

�
.

So, there are two possibilities

. If u ∈ Lyndon(Y ) then AEq−s+1

�
Hu(i− 1)

�
is as-

sumed to be stored.

. If u 6∈ Lyndon(Y ), with the Radford decompo-
sition, we write u as finite sum of terms t =
c l1 · · · lr, where c ∈ Q, li ∈ Lyndon, with

AEq−s+1 (Ht(i− 1)) = c

rY
p=1

AEq−s+1

�
Hlp(i− 1)

�
.

In a second time, if w 6∈ Lyndon(Y ), as before, we use
Radford decomposition and the table of the asymptotic ex-
pansion for the Lyndon words.
Example – Let l = y4y2 ∈ Lyndon(Y ). By Lemma 2,

H4,2(N) = ζ(4, 2)−
∞X

i=N+1

H2(i− 1)

i4
,

But H2(i− 1) = ζ(2)− 1

i
− 1

2

1

i2
+ O

�
1

i3

�
, so

H4,2(N) = ζ(4, 2)− ζ(2)

∞X
i=N+1

1

i4
+

∞X
i=N+1

1

i5

+
1

2

∞X
i=N+1

1

i6
+

∞X
i=N+1

O

�
1

i7

�

Expanding the sums in N , we finally find

H4,2(N) = ζ(4, 2)−
1

3

ζ(2)

N3
+

1
2

ζ(2) + 1
4

N4

−
1
3

ζ(2) + 2
5

N5
+ O

�
1

N6

�
.

�
Example – Let l = y1y4y2 /∈ Lyndon(Y ). The Radford
decomposition of l is given by l = y1 y4y2−y5y2−y4y1y2−
y4y2y1 − y4y3. Using our algorithm, we find :

H1,4,2(N) = log(N)ζ(4, 2)− ζ(4, 1, 2) + γζ(4, 2)

− ζ(5, 2)− ζ(4, 2, 1)− ζ(4, 3)

+
1

2

ζ(4, 2)

N
−

1

12

ζ(4, 2)

N2
+

1

9

ζ(2)

N3

+
− 1

24
ζ(2)− 1

16
+ 1

120
ζ(4, 2)

N4
+ O

�
1

N5

�

Thanks to the table giving the relations between MZV up
to weight 161 [7],we have the following identities

ζ(4, 2) = ζ(3)2 −
32

105
ζ(2)3

ζ(4, 1, 2) =
5

8
ζ(7) +

5

2
ζ(2)ζ(5)−

3

2
ζ(2)2ζ(3)

ζ(5, 2) = −11ζ(7) + 5ζ(2)ζ(5) +
4

5
ζ(2)2ζ(3)

ζ(4, 2, 1) = −
221

16
ζ(7) +

11

2
ζ(2)ζ(5) +

7

5
ζ(2)2ζ(3)

ζ(4, 3) = 17ζ(7)− 10ζ(2)ζ(5),

So, we deduce the reduced form of the previous expansion

H1,4,2(N) = log(N)(ζ(3)2 −
32

105
ζ(2)3)−

32

105
γζ(2)3

+ γζ(3)2 − 3ζ(2)ζ(5)−
7

10
ζ(2)2ζ(3)

+
115

16
ζ(7) +

1

2

ζ(3)2 − 32
105

ζ(2)3

N

−
1

12

ζ(3)2 − 32
105

ζ(2)3

N2
+

1

9

ζ(2)

N3

+
− 1

24
ζ(2)− 1

16
+ 1

120
ζ(3)2 − 4

1575
ζ(2)3

N4

+ O

�
1

N5

�

�
1This table is in agreement with the Zagier’s dimension con-
jecture [15] and is available at

http://www.lifl.fr/~petitot/publis/MZV.



4.4 More examples

H2,1(N) = ζ (3) +
− ln(N)− 1− γ

N

+
1
2

ln(N) + 1
2

γ + 1
4

N2

+

�
−1

6
γ − 5

36
− 1

6
ln(N)

�
1

N3
+ O

�
1

N4

�

H3,1(N) = ζ (3, 1) +
− 1

2
ln(N)− 1

4
− 1

2
γ

N2

+
1
2

ln(N) + 1
2

γ + 1
6

N3

+

�
−1

4
γ − 7

48
− 1

4
ln (N)

�
1

N4
+ O

�
ln(N)

N5

�

H2,1,1(N) = ζ (2, 1, 1) +
−1− 1

2
γ2 + 1

2
ζ (2)

N

+
− ln(N)γ − γ − 1

2
ln2(N)− ln (N)

N

+
1
4

ln(N)− 1
8

+ 1
4

ln2(N) + 1
2

ln(N)γ

N2

+
− 1

4
ζ(2) + 1

4
γ + 1

4
γ2

N2
+

�
− 5

36
ln(N)

+
29

216
− 5

36
γ − 1

6
ln(N)γ − 1

12
ln2(N)

+
1

12
ζ(2)− 1

12
γ2

�
1

N3
+

�
1

12
γ − 1

96

+
1

12
ln(N)

�
1

N4
+ O

�
ln2(N)

N5

�

H4,1(N) = ζ (4, 1) +
− 1

3
γ − 1

3
ln (N)− 1

9

N3

+
1
2

γ + 1
2

ln (N) + 1
8

N4

+

�
− 3

20
− 1

3
γ − 1

3
ln(N)

�
1

N5
+ O

�
1

N6

�

H3,2(N) = ζ (3, 2)− 1

2

ζ (2)

N2
+

1
2

ζ (2) + 1
3

N3

+
− 1

4
ζ (2)− 3

8

N4
+ O

�
1

N5

�

H3,1,1(N) = ζ (3, 1, 1) +

�
− 1

4
(ln (N))2 − 1

4
ln(N)

− 1

8
− 1

2
ln (N) γ − 1

4
γ +

1

4
ζ (2)

− 1

4
γ2

�
1

N2
+

�
− 1

4
ζ (2) +

1

6
γ

+
1

4
γ2 − 1

9
+

1

4
(ln(N))2 +

1

6
ln(N)

+
1

2
ln(N)γ

�
1

N3
+ O

�
ln2(N)

N4

�

H2,2,1(N) = ζ (2, 2, 1)− ζ (2, 1)

N

+
1
2

γ + 1
2

ζ (2, 1) + 1
2

ln(N) + 3
4

N2

+

�
−19

36
− 1

6
ζ (2, 1)− 1

3
γ − 1/3 ln(N)

�
1

N3

+

�
1

24
γ +

61

288
+

1

24
ln(N)

�
1

N4

+ O

�
ln(N)

N5

�

H2,1,1,1(N) = ζ (2, 1, 1, 1) +

�
− 1

6
γ3 − 1

3
ζ (3)

+
1

2
ζ (2) γ +

1

2
ζ (2) ln(N) +

1

2
ζ (2)

− 1

6
ln(N)3 − 1

2
(ln (N))2 − 1− ln(N)

− 1

2
(ln(N))2 γ − ln(N)γ − γ − 1

2
ln(N)γ2

− 1

2
γ2

�
1

N
+

�
− 1

4
ζ (2) γ +

1

12
γ3 +

1

8
γ2

− 1

8
ζ (2) +

1

12
ln(N)3 − 1

8
ln (N)− 1

16

+
1

4
ln(N)2γ +

1

4
ln(N)γ − 1

8
γ

− 1

4
ζ (2) ln(N) +

1

4
ln(N)γ2 +

1

8
ln(N)2

+
1

6
ζ (3)

�
1

N2
+ O

�
ln3(N)

N3

�

H5,1(N) = ζ (5, 1) +
− 1

4
γ − 1

4
ln (N)− 1

16

N4

+
1
2

ln(N) + 1
2

γ + 1/10

N5
+ O

�
ln(N)

N6

�

H4,2(N) = ζ (4, 2)− 1

3

ζ (2)

N3
+

1
4

+ 1
2

ζ (2)

N4

+
−2/5− 1/3 ζ (2)

N5
+ O

�
1

N6

�

H4,1,1(N) = ζ (4, 1, 1) +

�
1

6
ζ (2)− 1

6
ln(N)2 − 1

9
ln (N)

− 1

27
− 1

3
ln(N)γ − 1

9
γ − 1

6
γ2

�
1

N3

+ O

�
ln2(N)

N4

�

H3,2,1(N) = ζ (3, 2, 1)− 1

2

ζ (2, 1)

N2
+

�
1

3
γ +

4

9

+
1

2
ζ (2, 1) +

1

3
ln(N)

�
1

N3
+

�
− 17

32
− 3

8
γ

− 1

4
ζ (2, 1)− 3

8
ln(N)

�
1

N4
+ O

�
ln(N)

N5

�



H3,1,2(N) = ζ (3, 1, 2) +

�
− 1

2
ζ (2) γ +

1

2
ζ (3)

− 1

2
ζ (2) ln (N)− 1

4
ζ (2) +

1

2
ζ (2, 1)

�
1

N2

+

�
1

6
ζ (2) +

1

2
ζ (2) γ − 1

2
ζ (2, 1)− 1

3

− 1

2
ζ (3) +

1

2
ζ (2) ln (N)

�
1

N3
+ O

�
ln(N)

N4

�

H3,1,1,1(N) = ζ (3, 1, 1, 1) +

�
− 1

4
ln(N)2γ

− 1

4
ln(N)γ − 1

8
γ − 1

4
ln(N)γ2 − 1

8
γ2

− 1

12
(ln(N))3 − 1

8
ln(N)2 − 1

8
ln (N)

− 1

16
+

1

4
ζ (2) ln (N) +

1

8
ζ (2) +

1

4
ζ (2) γ

− 1

12
γ3 − 1

6
ζ (3)

�
1

N2
+ O

�
ln3(N)

N3

�

H2,2,1,1(N) = ζ (2, 2, 1, 1)− ζ (2, 1, 1)

N
+

�
1

2
ζ (2, 1, 1)

+
1

4
γ2 +

3

4
γ +

3

4
ln(N) +

7

8
+

1

4
(ln (N))2

+
1

2
ln(N)γ − 1

4
ζ (2)

�
1

N2
+ O

�
ln2(N)

N3

�

H2,1,1,1,1(N) = ζ (2, 1, 1, 1, 1) +

�
− 1− γ − 1

2
γ2

− 1

24
ln4(N)− 1

2
ln2(N)− 1

24
γ4

+
1

8
ζ (4)− 1

3
ζ (3)− 1

2
ln2(N)γ

− 1

2
ln(N)γ2 − 1

3
ζ (3) ln (N)− 1

3
ζ (3) γ

+
1

2
ζ (2) +

1

2
ζ (2) γ − 1

6
γ3 − 1

6
ln3(N)

+
1

4
ζ (2) ln2(N)− 1

6
ln (N) γ3

− 1

4
ln(N)2γ2 − 1

6
ln(N)3γ

+
1

2
ζ (2) ln(N)γ +

1

4
ζ (2) γ2

+
1

2
ζ (2) ln (N)− ln(N)− 1

4
ζ (2, 2)

− ln(N)γ

�
1

N
+ O

�
ln4(N)

N2

�

H6,1(N) = ζ (6, 1) +
− 1

5
ln(N)− 1

25
− 1/5γ

N5

+
1
2

ln(N) + 1
12

+ 1
2
γ

N6

+

�
−1

2
γ − 13

84
− 1

2
ln (N)

�
1

N7
+ O

�
ln(N)

N8

�

H5,2(N) = ζ (5, 2)− 1

4

ζ (2)

N4
+

1
2
ζ (2) + 1

5

N5

+
− 5

12
− 5

12
ζ (2)

N6
+

23
84

N7
+ O

�
1

N8

�

H5,1,1(N) = ζ (5, 1, 1) +

�
− 1

4
ln(N)γ − 1

16
γ

− 1

8
ln2(N)− 1

16
ln(N)− 1

64
− 1

8
γ2

+
1

8
ζ (2)

�
1

N4
+ O

�
ln2(N)

N5

�

H4,3(N) = ζ (4, 3)− 1

3

ζ (3)

N3
+

1

2

ζ (3)

N4
+
− 1

3
ζ (3) + 1/10

N5

−
1
6

N6
+

1
28

+ 1
6
ζ (3)

N7
+ O

�
1

N8

�

H4,2,1(N) = ζ (4, 2, 1)− 1

3

ζ (2, 1)

N3
+

�
1

4
γ +

1

2
ζ (2, 1)

+
5

16
+

1

4
ln(N)

�
1

N4
+

�
− 2/5γ − 53

100

− 2/5 ln(N)− 1

3
ζ (2, 1)

�
1

N5
+ O

�
ln(N)

N6

�

H4,1,2(N) = ζ (4, 1, 2) +

�
− 1

3
ζ (2) ln(N)− 1

9
ζ (2)

+
1

3
ζ (3)− 1

3
ζ (2) γ +

1

3
ζ (2, 1)

�
1

N3

+ O

�
ln(N)

N4

�

H4,1,1,1(N) = ζ (4, 1, 1, 1) +

�
− 1

9
ζ (3)− 1

18
γ3

+
1

6
ζ (2) γ − 1

6
ln2(N)γ − 1

9
ln(N)γ − 1

27
γ

− 1

18
ln3 N − 1

18
(ln (N))2 − 1

27
ln (N)

− 1

81
+

1

6
ζ (2) ln(N) +

1

18
ζ (2)− 1

6
ln(N)γ2

− 1

18
γ2

�
1

N3
+ O

�
ln3(N)

N3

�
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[3] J. Blümlein.– Mathematical Structure of Anomalous
Dimensions and QCD Wilson Coefficients in Higher
Order, Nuclear Physics B (Proc Suppl.), 135, pp
225-231, (2004).

[4] C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh.–
Algorithmic and combinatoric aspects of multiple
harmonic sums, in the proceedings of AofA,
Barcelone, 6-10 June, (2005).

[5] P. Flajolet, G. Labelle, L. Laforest, B. Salvy.–
Hypergeometrics and the Cost Structure of Quadtrees,
Random Structures and Algorithms, Vol. 7, No.2, pp
117-144, (1995).

[6] Hoang Ngoc Minh.– Finite polyzetas, Poly-Bernoulli
numbers, identities of polyzetas and noncommutative
rational power series, proc. of 4th Int. Conf. on Words,
pp. 232-250, September, 10-13 Turku, Finland, (2003).

[7] Hoang Ngoc Minh & M. Petitot.– Lyndon words,
polylogarithmic functions and the Riemann ζ function,
Discrete Math., 217, pp. 273-292, (2000).

[8] Hoang Ngoc Minh, M. Petitot & J. van der Hoeven.–
L’algbre des polylogarithmes par les sries gnratrices,
SFCA’99, Barcelone, (1999).

[9] Hoang Ngoc Minh, M. Petitot & J. van der Hoeven.–
Shuffle algebra and polylogarithms, Discrete
Mathematics, 225, pp 217-230, (2000).

[10] M. Hoffman.– The algebra of multiple harmonic series,
Jour. of Alg., August (1997).
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