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Abstract

In this work, we obtain some results a [’Abel dealing with noncommutative generating
series of polylogarithms and multiple harmonic sums, by using techniques a la Hopf. In
particular, this enables to explicit generalized Euler constants associated to divergent
polyzétas and to extract the constant part of (commutative and noncommutative) gener-
ating series of all polyzétas.
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1 Introduction

Let us consider the alphabet Y = {y;}ien,. To each word w = vy, ... ys,
of the monoid Y™*, we associate the multiple harmonic sum H,,(N) and the
polylogarithm Li,(z)

ni

1 . z
Hy(N)= > S Lhw(?) = >, e (1)
1 ---Ny NN 7%

N>ny>..>n,>0 ny>..>n,.>0 L

For0 < N < r,H,(N) = 0 and for the empty word €, we put H.(INV) = 1, for
any N > 0. For w € Y*\yY*, the limits lim,_,; Li, (2) and limy_.~, Hy,(N)

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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exist and, by an Abel theorem, are equal to the convergent polyzéta ((w)
1
Cw)y=")_ s 1>l (2)
ny>..>n,>0 L T

In other cases, i.e. for w = ysw’, the associated polylogarithm Li, and
polyzéta ((w) can be considered respectively as a polylogarithmic gener-
ating series and as Dirichlet series

. p p
Liyw(2) = Z FA;ZN and ((ysw') = Z F]\; (3)
N>0 N>0

with py = Hy/(N — 1). Both series can be obtained from the following
generating series

Pulz) = S Hu(W)2V =3 pyarz", (4)

respectively by the polylogarithmic transform and by the Mellin trans-
form [1]

Liyu(s) = [~ PG and () = [P EE )

The generating series P, can also be expressed using the polylogarithm :
P, (2) = (1 — 2) ' Liy(2). (6)

The knowledge of the singular expansion of P, in the scale {(1 —
2)%1og”(1 — 2)}aczpen enables then to get, on the first hand the asymp-
totic behaviour, as N — oo, of its Taylor coefficients H,/(N) in the
scale {N®log” N}aez gen. Then, to deduce the behaviour of H,(N), since
H,(N) = S, Hy(i — 1)/i*. This gives on the other hand, through a
tauberian theorem, the singular expansion of Dirichlet series (ysw’) con-
sidered then as a function of the complex variable s.
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Both studies lead to apply another Abel theorem dealing with Dirichlet
series [2]. Indeed, let us consider the partial sum Sy of coefficients of the
ordinary generating series P, (z2),

N N
Sy = Zpi—i—l = Z Hoy (7). (7)

If Sy admits a singular expansion of the following type

k
Sy =Y _ B;N7log" N + O(N”), (8)

J=1

where, for all j = 1,..,k, B; is an arbitrary complex number, o;, o; are
arbitrary integers, and (3 is an integer such that § > oy, then the Dirichlet
series ((ysw') is convergent for s > 1 and even regular except in oy, ..., o
which are its logarithmic singularities.

In order to adapt automatically these Abel techniques to polylogarithms
{Liy }wey+ and to multiple harmonic sums {H,, },ey+, we consider the non-
commutative generating series

A(z) = ) Liy(z)w and H(N)= Y Hy(N)w. (9)

weyY* weyY*

Through algebraic combinatoric [3] and elements of topology of formal
series in noncommutative variables [4], we show in Section 2.2 the existence
of formal series over Y, Z; and Z5 in non commutative variables with
constant coefficients, such that

1
lin% exp [yl log 1 ]A(z) = 7y and (10)

lim exp [Z H,, (N) (_yl)k] H(N) = Z».

N—oo k
k>1

Moreover, we have Z; = Z5, both standing for the noncommutative gener-
ating series of all convergent polyzétas {((w)}yey=\y,v+, (as shown by the
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factorized form). This enables, in particular, to explicit generalized Euler
constants associated to divergent polyzétas {((w)}wey, v+ and to extract
the constant part of generating series (commutative and noncommutative)
of all polyzétas.

Techniques presented in this paper can be applied to other fields, like
polysystems occuring in physical problems, and enable to make the cal-
culations easier. To illustrate this, we present in appendix some results
to compute, thanks to such techniques, the solution of a linear differential
system, with three singularities, that can be supposed to be {0, 1, 0o}, after
an homographic transformation.

2 Polylogarithm and harmonic sum

2.1 Algebraic properties
2.1.1 Symmetric functions and harmonic sums

Let {t;}ien . be an infinite set of variables. The elementary symmetric
functions A\, and the sums of powers ¢, are defined by

M) = )ty oty and Pp(t) =)t (11)

ny>...>ni>0 n>0

They are respectively coefficients of the following generating functions

A(t|z) = Z Me(t)2F = H(l + t;z) and (12)

k>0 i>1
N l;
wltl) = S et =3
k>0 i>1 t

These generating functions satisfy a Newton identity

d/dzlog A(t]z) = ¥ (1] — 2). (13)
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The fundamental theorem from symmetric functions theory asserts
that the {\}r>o are linearly independent, and remarkable identities give
(putting \g = 1) :

B = (-DF ) (811“%)(—%)(—%) (14)

81 5eees 5, >0
sl+...+ksk:k
Let w = ys,...ys, € Y*. The quasi-symmetric function F,,, of depth
r = |w| and of degree (or weight) s; + ...+ s,, is defined by

Futy= > tn. ..t (15)

n1>...>n.>0

In particular, Fy = A and F,, = 1. As a consequence, the functions
{Fs bk>0 are linearly independent and integrating differential equation (13)
shows that functions Fx and F, are linked by the formula

Y Fuzt =exp [— > Fyk%] . (16)

k>0 k>1

Remarkable identity (14) can be then seen as :

Byb = (-f Y <51 g )%mm% (17)

ey S
8750 s >0 ) ) 9k
51+..‘+k5k:k

Every H,,(N) can be obtained by specializing variables {t;} y>;>1 at t; =
1/i and, for i > N,t; = 0 in the quasi-symmetric function F,, [5]. In
the same way, when w € Y™ \ y;Y™*, the convergent polyzéta ((w) can
be obtained by specializing variables {t;};,>1 at t; = 1/i¢ in F,, [5]. The
notation F}, is extended by linearity to all polynomials over Y.

If u (resp. v) is a word in Y™, of length r and of weight p (resp. of length

s and of weight q), Fy ., is a quasi-symmetric function of depth r + s and
of weight p + ¢, and we have F, ., = F, F,.
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In consequence, H, .,, = Hy H, [5]. In the same way, when u,v € Y*\y; Y™,
we also have ((uwv) = ((u) ((v) [5].
Let us consider the noncommutative generating series H(N) of

{Hu(N) fwey- [14],

=N
H(N) = > Hy(N) w= H<1+Z?—> (18)

weY* 1 >0

since it verifies the difference equation

H(N) = (1 +y %)H(N — 1), with H(0) = 1. (19)

i>0
2.1.2  Polylogarithms and polyzétas

Let us denote by C the algebra C[z,1/z,1/(1 — z)] of polynomial functions
in z,1/z and 1/(1 — 2z). We define two differential forms wy(z) = dz/z and
wi(z) =dz/(1 = 2).

Let w = 2 'a;... 27 "2y € X*z;. One can check that the polyloga-
rithm Li, is also the value of the iterated integral over wy,w; and along
the integration path 0 ~» z :

Li, — / i o . (20)
O~z

This provides an analytic continuation of the Li, over the universal cov-

ering C — {0, 1} of C without points 0 and 1. We extend the definition of
polylogarithms over X™* putting

Lig(2) = log* z/k!, for k€N, (21)

Let Ll = (C{Liy}wex+,.) be the smallest C-algebra containing C and
stable by differentiation and integration over wg,w;. It can be identified
with the C-module generated by polylogarithms. Thus, the polylogarithms
are C-linearly independent [6]. Hence, (C{Li, }wex+,.) is identified with the
polynomial algebra (C{P;}iccynx, ) [6].
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The noncommutative generating series L(z) = >~ v. Liy(2) w satisfies
Drinfel’d differential equation [7, §]

dL = (xowo + z1w1)L, with the condition (22)
L(g) = e™1°8° 1 O(1/e) for ¢ — 0.

This enables to prove that L is the exponential of a Lie series [6]. So,
applying a Ree theorem, it verifies Friedrichs criterion [6], i..e Liy,, , =
Li, Li, for u,v € X*. In particular, when u,v € o X*x, we also have
C(uwv) = ((u) ((v). From the factorization of monoid by Lyndon words,
we obtain the factorization of the series L [6] :

N
L(Z) — ol log T [ H eLisl(z)[l]] e logz. (23>
leLynX\{zo,x1}

For all | € LynX \ {xg, x1}, we have S; € xo X" z1. So, let us put [6]

N\
Lig= || " and Z =L, (1) (24)
leLynX\{xg,z1}

Let o be the monoid endomorphism verifying o(xy) = —x1,0(x1) = —xy,
we also get [9]

L(z) = 0[L(1 — 2)]Z = "% gLy (1 — 2)]e 118172 7. (25)

In consequence, from (23) and (25), we get respectively

1
L(z) ~; exp(wologz) and L(z) —~7 exp (xl log 1 )Z. (26)
-z

Let my : LIo(X)) — LI(Y)) a projector s.t., for f € Llp,w €
X* my (f wxy) = 0. Then

1
A(z) = myL(2) ~ exp <y1 log ;

)wYZ. (27)
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Definition 1 ([1]). Let (,, : (C{(X),w) — (C,.) be the algebra morphism
(i.e. foru,v € X* (, (uwv) = (, (), (v)) verifying for all convergent
word w € xoX*x1,(,,(w) = ((w), and such that ,,(xo) = (,, (1) = 0.

Then, the noncommutative generating series Z,,, = > _y. (. (w) w
verifies Z,, = Z [1]. In consequence, Z , is the unique Lie exponential
verifying (Z,,,|z¢) = (Z.,|x1) = 0 and (7, |w) = ((w), for any w € x¢ X x;.
Its logarithm is given by log Z,,, = ), < x- (w (w) mi(w), where 7 (w) is the
Lie polynomial [3]

m(w) = Z (_113 _ Z (wlug w - wug) ug - ug. (28)

/le Ul,"',ukeX*\{e}

The series Z shall be understood then as Drinfel’d associator ®x, [7, 8]
verifying duality, pentagonal and hexagonal relations. We also can obtain
the expression of this associator given by Lé and Murakami [11] thanks to
the following expansion [10]

2
7 = Z Z (o (oo xpalh) H adig’o x1, (29)
k>0 1y, 1,20 i=1
where adég0 x1 stands for the iterated Lie bracket [z, |. .., [zo, 1] .. .], for I >

0 and ad), 21 = 1, the operation o being defined as 120 P = x1(z}w P),
for any P € C(X).

2.1.8 Ordinary generating series of harmonic sums

The functions {Li,},ex+ are C-linearly independent. Thus, the func-
tions {Py, } ey~ are also C-linearly independent. In consequence, functions
{Hy }wey+ are also C-linearly independent [13, 12]. So,

Proposition 1 ([14]). Extended by linearity, the application P : u — P, is
an isomorphism from polynomial algebra (C(Y), =) over Hadamard alge-
bra (C{Py }wey+, ®). Moreover, the application H : u — H, = {H,(N)}n>0
is an isomorphism from (C(Y), w) over the algebra (C{Hy} ey, ).

8
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Proof : Indeed, on the first hand, ker P = {0} and ker H = {0}, and on
the other hand, P is a morphism for Hadamard product (it inherits of H
for the harmonic product) :

Pu(2) ©Py(2) = Y Hy(N)Hy(N)2"

N>0
— ZHUMU(N)ZN
N>0
= Puwo(2).
Studying the equivalence between action of {(1 — 2)'}cz over

{P,(2)}wey~ and this of {N*},cz over {H, (N)}wey- [12], we have

Theorem 1. The Hadamard C-algebra of {P,}wey+ can be identified with
this of {Pi}iecyny. Identically, the algebra of harmonic sums {Hy }yey-
with polynomial coefficients can be identified with this of {H;}iecyny -

As for polylogarithms, we extend the definition of P, putting P, (z) =
(1 — 2) " 'Liy(2), for any w € X*. The noncommutative generating series
of {Py}wex+ is defined by

P(z) = Z Pu(z) w =

weX*

L(z)
1—2z

(30)

In consequence, by (23), we have
P(z) = ¢ (tlloell=a)],  (2)etolo8”, (31)

Lemma 1. Let Mono(z) = e~(@1#D181=2)  Thep

Mono = Z P y¥. and Mono ! = Z P (—y1)".
k>0 k>0

Since the coefficient of 2V in the Taylor expansion of P, is Hyp(N) then

Lemma 2. Let Const = Y, Hye yf. Then

Const — (=y)" . (=y)"
onst = exp | — Z HykT and Const™ = exp Z H,, |
k>1 k>1
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Proof : This is a consequence of Formula (16).

Proposition 2. For k > 0,H is polynomial in {H,, }1<,<x (which are
algebraically independent), and

CDF(HNT(H)
H = ——= ol == .
h Z sl .. 8! 1 k

81 yeees Sk>0

Proof : From Identity (17), and applying the isomorphism H on the set
of Lyndon words {y, }1<,<k, we get the expected result.

Example 1. Hp = (H2 — H,,)/2, Hys = (H}, — 3H,,H,, + 2H,,)/6.

Proposition 3 ([14]). Let o be the morphism wverifying o(xy) =
—561,0(371) = —Xy.

N\
P(Z) _ 6xologz[ H eLiSl(l_Z)U([l]) MOHO(Z)Z,
leLynX \{wo,x1}

Proof : On the first hand, from (31) and on the other hand, from (25),
we get P(2) = ™87 (L (1 — 2)]je"("1+D18(1=2) 7 Using the expressions
of Lyeg(1 — 2) and of Mono(z), we get the expected results.

2.2 Asymptotic expansion
2.2.1 Results a I’Abel for generating series
Proposition 4. P(z) —~; e™'*8* and P(z) -~ Mono(z)Z.

z—0

Proof : From P(z) = e~ (mtDloel=2)T,  (2)e0l8% we can deduce the
behaviour of P(z) around 0. From Formula (25), we get the behaviour of
P(z) around 1.

Corollary 1. Let II(z) = wvP(2) = >, Puw(2) w. Then
I1(z) ~; Mono(z)7my Z.

10
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From this, we extract, taking care of Lemma 1, Taylor coefficients of P,
and we get

Corollary 2. H(N) —~— Const(N)myZ.

Theorem 2.

| 1 —y)t
1{}} exp <y1 log T z)A(Z lim exp (Z H, (N )H(N) =nyZ.

N—oo
k>1

Proof : This is a consequence of Formula (27), of Lemma 2 and of Corol-
lary 2.
From Proposition 3, we deduce

P(z) :exolog{ ﬁ Z(ZPSlMu—z)("(g!]))kHMono(z)z. (32)

leLynX, k>0
l#xg,2q -

Hence, the knowledge of Taylor expansion around 0 of {P,(1 — 2)}yex-
gives

Theorem 3 ([12]). For all g € C{Py}wey+, there exist algorithmically
computable coefficients c¢; € C, a; € Z and $; € N such that

+o0o

g(z) ~ ch(l — 2)%log’i(1 —2) for z—1.
=0

In consequence, there exist algorithmically computable coefficients b; € C,
n; € Z and k; € N such that

+00
z) ~ Z bn"log"(n) for mn — oc.

Corollary 3 ([12]). Let Z the Q-algebra generated by convergent polyzétas
and Z' the Q[v]-algebra generated by Z. Then there exist algorithmically
computable coefficients c; € Z, a; € Z and 3; € N such that
+00
Vw € Y, Py(z) ~ Y cj(1—2)%logh(1—2) for z—1.
=0

11
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In consequence, there exist algorithmically computable coefficients b; €
Z' k; € N and n; € Z such that

400
Vw € Y Hy(N) ~ Y biN"log™(N) for N — +oc.
1=0

2.2.2  Generalized Fuler constants associated to divergent polyzétas

Definition 2. Let (., : (C{Y), w ) — (C,.) the algebra morphism (i.e.
for all convergent word u,v € Y*, ( (uwv) = (. (u)Cw (v)) verifying for
weY* \ 1Y, (u(w) =((w) and such that (. (y1) = 7.

Proposition 5.

= 3 S () ()

81 5e-,8f >0 )
81+...+k8k:k

Proof : By (17) and applying the (surjective) morphism (.,, we get the
expected result.
In consequence,

Theorem 4. For k > 0, the constant (. (y}) associated to diver-
gent polyzéta C(yr) is a polynomial of degree k in v with coefficients in
Q[¢(2), ¢(2i + 1)]o<i<(k—1)/2. Moreover, for | = 0,..,k, the coefficient of At
is of weight k — 1.

Example 2. (. (y7) = [v* = ((2)]/2, (s (1) = [+* = 3¢(2)7 +2((3)]/6 and
G (y1) = [80C(3)y — 60¢(2)7* + 6¢(2)* + 107 /240.
Let us consider (exponential) partial Bell polynomials partiels in the

variables {t;};>1, b x(t1,. .., tn—k+1), defined by the exponential generating
series :

00 Unuk o Ul
Z bn,k(tla o tn—kg1) ol = €Xp (U 12—1: t1ﬂ> : (33)

12
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In particular, we have

Lemma 3. Let t,, = (—1)"(m — 1)!I{w, (m), for m > 1, then

x| Y G2 ]—1+Z{anmc 2(3)...)| 4l

k>1 n>1

Let us build the noncommutative generating series of (., (w) and let us
take the constant part of the two members of H(NV) —~— Const(N)myZ,
we have

Proposition 6. Let Z ., be the noncommutative generating series of the
constants Cu (W), i.e. Zu =) ey Cw (W) w. Then

{1+Z<ank7C 2¢(3), -~-)>(_g!1)n]7ryZ.

n>1

Identifying coefficients of yfw in each member leads to

Corollary 4. For allw € Y*\ 11 Y* and k > 0, we have

Cm(yfw)—i%[ szﬂc )...)].

Theorem 5. In consequence, for w € Y* \ y1Y* k > 0, the constant
Cw (yfw) associated to ((yYw) is a polynomial of de degree k in vy and with
coefficients in Z. Moreover, for | =0, .., k, the coefficient of v' is of weight
lw| +k — 1.

Corollary 5. Fors > 1, the constant (., (1, s) associated to ((1, s) is linear
in v and with coefficients in Q[C(2), (27 + 1)]o<i<(s—1)/2-

1 p
bample 3, o = (2(LDFAE) I LIEP

¢(2) ¢(3)
Cuw (1,4) +3¢(5) = ¢(2)¢(3)
£C(2)? |

13
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In other words, if we give to « the weight? 1, then the constant (., (yfw)
associated to (y¥w) would be an homogeneous polynomial of weight |w|+

k.

Example 4.

Qs (177) - C(7)7+C(3)C(5) 15745 (2)47
(L (L1.6) = Ac(2 )372+(( (5) + 2¢(3)C ))7

)¢
+((6,2) + 55¢(2)* + 3¢(2)¢ ) ¢(5),
G (1717175) - 4C(6 2) ( )C( % ( +% (2)

(> () - 30 + %(3)@(2))7
+ (i<<3>2 - 5¢ <2)3> RSO

\_//\
/‘\
v

_|_
)+
)¢

2.2.3 Commutative generating series of polyzétas

In Proposition 6, we explained how to extract the constant part of a non-
commutative generating series of polyzétas. Let us have a look now at
following commutative generating series and corresponding to Ecalle’s Zig-
moulds [15] :

Z(tln"' 7t7“) = Z C(Sla"' 787”) tilil'”tir_l (34)

These commutative generating series can be encoded by series {S;};=1, ,
(or their projection over the alphabet Y) of the form [1]

2 In the theory of periods, v is conjectured to be non-period and so would be transcendent.

14
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S] —(t]:co) I . (tr.fE()) T (35)
= S ayleay ety
8]7 as'r‘>0
—1 _
TySi= Y Yy Ysty ot (36)
85,0087 >0
s;i—1 =1
=(Z 0 ) (Zysrtﬁ )
5;>1 sr>1
Moreover, let S,;1 = 1. The series Z(t1,- - ,t,) contain divergent terms of

which we are looking for the constant part. We start from the following
identity [1] due to convolution theorem [16]

r j—1
Sl == .Tq + Z tj Z Zlfﬁ L .Cllo[(—xl)j_l_i L Sj], (37)

j=1 =0
= myS = Z/{+th<z vy, jj_1>7TY5j+1- (38)

j=1 5,22
Proposition 7. In consequence,
G (81) = Y (=177t Clao @] Sy)]. (39)
j=1
, )" 11 _SH)\”

Cos (my ) =(=1) Z sf! )3 'H<_%> 40

8] eens sr>0 e ]:2
s1+...+rsr=r

i—1 j—
+ Z Z tjtj Cua (y{ lystYSjJrl)-

j:l SjZQ

In the following part, iterated integrals associated with words w € X*,
along the path 0 ~» 2z and over differential forms wy,w;, will be denoted,
as in [1], by of(w).

15
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Example 5. Since (txo)*x1 = x1 + txo(tzg) 21,

aé[(two)*xl]:ag(x1)+t/02< ) Liy (s )d — ai(m) +tz —

W | W

St = et = Y],

s>1 5§22 nzl - -
S— S— ]. ]_

D Cut™ =y ) T =y ) | — .

s>1 §>2 n>1 L n]

Example 6. Identity (37) gives

S :CC% + tl xo(tlxo)*xl(tgxo)*xl + t2 Zo (—x1 u_v(tgxo)*xl) (41)

+ tQ 1w .Cl,‘o(tQSCo)*xl.
In the second member of the previous expression,
e we have ¢, (23) = 0,

e the first noncommutative rational series encodes, by convolution the-
orem [16], the following convergent integral

apl(trio) wox (tazo) 1] = /( >tlds/ 1—7~Zn—t2

- Z (n+m)(n+m—t1)(n—t2)

n,m>1

1
B Z ni(ny —t1)(ng —t2)’

ni>ng>1

16
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e the following rational series encodes

anlxo (—x1 w(texg) = — — E —§
0L>0 ! Sl 0o S m n21n—t2

m>1

1
- Z (n —t2)(n +m)n

n,m>1

1
- Z ni(ny — ng)(ng — ta)’

ni>ng>1

e the last noncommutative rational series corresponds to (but it has to
be shuffled with x1 for which ¢, (x1) =0)

1
. ds s" 1
aplwo(tamo) rcl]:/ —D> = nln—t)
o S =1 n ) n\n 2

n>1

Thus,

s—1,r—1 4]
Z Cu_v ($7T)t1 t2 - Z nl(nl . tl)(nQ . tg) (42)

5,r>1 ni>ng>1

1o
B Z ni(n1 — ng)(ng — ta)

ni>no>1

Projecting S over alphabet 'Y, we get successively,  since
Y1Ys = Y1 wlYs — Ys+1 — YsH1

17



GIFT 2006

ayS=yi+ >yt D ety Y yanty !

s,r>2 s>2 §>2
1
2 —1r— -1 -1
—yi + Y ysyeti Ty e Y gty — - [yl + ) s ]
s,r>2 5§>2 5§>2
+ > gty =157
§>2

=it =) S+ 3

$>2 §,r>2

+ Z ysoi[ti =57,

§>2

In consequence,

S uloniite = T8 >

s,r>1 2 n>1 n-— tQ n
1 1 1 1
- 2 el
. ny — tl ni N9 — ng o)
+ 3 sl -t
s>2

The last sum can be encoded by xo(t1wo)*x? — xo(taxo)*x} and can be o0b-
tained from

1 x 2 " ds
aglzo(tizo) xy] = s >

ni>no>1

s™

1
(ny —ti)ny Z ni(ny —t;))ng

n1>ne>1

Appendix : application to polysystems [14]

Let ¢1,...,q, be commutative indeterminates over C. We denote () =

{q1,...,q,}. The algebra of formal power series (resp. polynomials) over
Q with coefficients in C is denoted by C[[Q]] (resp. C[Q]). An element of

Cl[Q]] is an infinite sum f = >, . o fi, .4 g

18
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Definition 3. Let f € C[[Q]]. We set
E(f) = {pe R} :3Cs, € Ry such that for all iy,. .., >0,

Ef) : interior of E(f) in R".

CV(f) = convergence domain of f ={q € C": (|q1],-..,|q|) € E(f)}.

The power series [ is to be said convergent if CV(f) # (0. Let U be an
open of C" and let ¢ € C". The power series f is to be said convergent on
q (resp. overU) if g € CV(f) (resp. U C CV(f)). We set CV[[Q]] = {f €
CllQ]] : CV(f) # 0}. Let ¢ € CV(f). There exist some constants Cy,, p
and p such that |q| < p < p,...,|qu] < p < p and|fi, i |p" T < Cf,

.....

foriy...,i, > 0. The convergence module of f at q is (Cy,, p, p).

Recall D{l ... Dinf is the partial derivation of order ji,...,j, > 0 of f
and is given by

D.]]:.l — D%nf - Z fll ..... Z.n ﬁ (;i) f{_jl'

I |
]1. .o ]’n, 11201yt > 0n =1

Definition 4. The polysystem {A;}i—o.. . is defined by the Lie deriva-
tions A; = Y i AjD;, where A] € CV[[Q]]. It is linear if there ewist
{Mi}i:O,..Jn - Mnm(C) s.t.

Ai=(q - go) M; |
D,

Let f € CY[[Q]] and let {A;}i—o1 be a polysystem. Let (p,p,Cy) and
let (p,p,C;), for i = 0,1, be convergence modules of f and {Ag}j=17..,n
respectively at ¢ € CV(f) Mi—o.1j-1.... CV(A!). We denote by (Aif)), the
evaluation at q of A;f. Let us consider the system

y(z) = f(q(2)), where dq(z) = Ao(q)wo(2) + A1(q)w1(2). (43)

19



GIFT 2006

Let us consider then the following generating series, o f|q(zo) and the Chen
series S .z

Oy = Z Apflyw and Sy, = Z o, (w)w, (44)
weX* weX*
where A, = Id, o (w) = 1if w = € and A, = A4, (w) =
Loy @ (0)wi(t) if w = va;.
Since S,,.., and L(2)L(z) ! satisfy (22) taking the same value at zy then
S.,r = L(2)L(2)"!. Hence, the asymptotic behaviour of L in (22) gives

6]
Sevip e~ e tloBE Zomm0logs for o T (45)

|SZOWZ> -

and the output y of (43) is given by y(z) = <0f|q<z0>

ZweX* AU’f|q(z0)a§o (UJ) [14]

Let n = q(z0) and suppose that f(q) = A\¢ with A € M ,,(C). If {A;}izo1
is linear, then, by Definition 4, let M; = u(x;), for i = 0, 1. Thus, O floer) =
Y wexs A(w)n]w is a rational power series of representation (A, i, n) and
it is a generating series of the differential system of rank n, or equivalently
of the linear differential equation of order n with singularities in {0, 1, co}.

Example 7 (hypergeometric equation).
2(1 = 2)4(2) + [t2 — (to + t1 + 1)2]y(2) — totary(z) = 0.
Let ¢1(2) = y(z) and q2(2) = z(1 — 2)y(z). One has

(an) = [Con )= (0 n-n) ) G)
dgs —tot; —t2) 0 N0 ta—to—t1) | \@/)"
¢ 0 0 0 1 )

Here y = (1 0 , My = — My = and

Y ( ) (QQ) 0 (totl tg) ! (0 to —to — 11

z

n = <Q1( o))

q2(20)

Thus, the solution of these equations can be obtained by examining the

linear representation of generating series. The Drinfel’d equation allows to

study the asymptotic behaviour, the functional equations and to compute
the mondromy groups, the Galois differential groups.
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