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Abstract

In this work, we obtain some results à l’Abel dealing with noncommutative generating
series of polylogarithms and multiple harmonic sums, by using techniques à la Hopf. In
particular, this enables to explicit generalized Euler constants associated to divergent
polyzêtas and to extract the constant part of (commutative and noncommutative) gener-
ating series of all polyzêtas.
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1 Introduction

Let us consider the alphabet Y = {yi}i∈N+
. To each word w = ys1

. . . ysr

of the monoid Y ∗, we associate the multiple harmonic sum Hw(N) and the
polylogarithm Liw(z)

Hw(N) =
∑

N≥n1>...>nr>0

1

ns1
1 . . . n

sr
r
, Liw(z) =

∑
n1>...>nr>0

zn1

ns1
1 . . . n

sr
r
. (1)

For 0 ≤ N < r,Hw(N) = 0 and for the empty word ε, we put Hε(N) = 1, for
any N ≥ 0. For w ∈ Y ∗\y1Y

∗, the limits limz→1 Liw(z) and limN→∞ Hw(N)

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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exist and, by an Abel theorem, are equal to the convergent polyzêta ζ(w)

ζ(w) =
∑

n1>...>nr>0

1

ns1
1 . . . n

sr
r
, s1 > 1. (2)

In other cases, i.e. for w = ysw
′, the associated polylogarithm Liw and

polyzêta ζ(w) can be considered respectively as a polylogarithmic gener-
ating series and as Dirichlet series

Liysw′(z) =
∑
N>0

pN

N s
zN and ζ(ysw

′) =
∑
N>0

pN

N s
(3)

with pN = Hw′(N − 1). Both series can be obtained from the following
generating series

Pw′(z) =
∞∑

N=0

Hw′(N)zN =
∑
N≥0

pN+1z
N , (4)

respectively by the polylogarithmic transform and by the Mellin trans-
form [1]

Liysw′(z) =

∫ ∞

0

Pw′(ze−u)

Γ(s)

du

u1−s
and ζ(ysw

′) =

∫ ∞

0

Pw′(e−u)

Γ(s)

du

u1−s
. (5)

The generating series Pw′ can also be expressed using the polylogarithm :

Pw′(z) = (1− z)−1 Liw′(z). (6)

The knowledge of the singular expansion of Pw′ in the scale {(1 −
z)a logb(1 − z)}a∈Z,b∈N enables then to get, on the first hand the asymp-
totic behaviour, as N → ∞, of its Taylor coefficients Hw′(N) in the
scale {Nα logβ N}α∈Z,β∈N. Then, to deduce the behaviour of Hw(N), since
Hw(N) =

∑N
i=1 Hw′(i− 1)/is. This gives on the other hand, through a

tauberian theorem, the singular expansion of Dirichlet series ζ(ysw
′) con-

sidered then as a function of the complex variable s.
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Both studies lead to apply another Abel theorem dealing with Dirichlet
series [2]. Indeed, let us consider the partial sum SN of coefficients of the
ordinary generating series Pw′(z),

SN =
N∑

i=1

pi+1 =
N∑

i=1

Hw′(i). (7)

If SN admits a singular expansion of the following type

SN =
k∑

j=1

BjN
σj logαj N +O(Nβ), (8)

where, for all j = 1, .., k, Bj is an arbitrary complex number, σj, αj are
arbitrary integers, and β is an integer such that β > σk, then the Dirichlet
series ζ(ysw

′) is convergent for s > 1 and even regular except in σ1, . . . , σk

which are its logarithmic singularities.
In order to adapt automatically these Abel techniques to polylogarithms

{Liw}w∈Y ∗ and to multiple harmonic sums {Hw}w∈Y ∗, we consider the non-
commutative generating series

Λ(z) =
∑
w∈Y ∗

Liw(z) w and H(N) =
∑
w∈Y ∗

Hw(N) w. (9)

Through algebraic combinatoric [3] and elements of topology of formal
series in noncommutative variables [4], we show in Section 2.2 the existence
of formal series over Y , Z1 and Z2 in non commutative variables with
constant coefficients, such that

lim
z→1

exp

[
y1 log

1

1− z

]
Λ(z) = Z1 and (10)

lim
N→∞

exp

[∑
k≥1

Hyk
(N)

(−y1)
k

k

]
H(N) = Z2.

Moreover, we have Z1 = Z2, both standing for the noncommutative gener-
ating series of all convergent polyzêtas {ζ(w)}w∈Y ∗\y1Y ∗, (as shown by the
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factorized form). This enables, in particular, to explicit generalized Euler
constants associated to divergent polyzêtas {ζ(w)}w∈y1Y ∗ and to extract
the constant part of generating series (commutative and noncommutative)
of all polyzêtas.

Techniques presented in this paper can be applied to other fields, like
polysystems occuring in physical problems, and enable to make the cal-
culations easier. To illustrate this, we present in appendix some results
to compute, thanks to such techniques, the solution of a linear differential
system, with three singularities, that can be supposed to be {0, 1,∞}, after
an homographic transformation.

2 Polylogarithm and harmonic sum

2.1 Algebraic properties

2.1.1 Symmetric functions and harmonic sums

Let {ti}i∈N+
be an infinite set of variables. The elementary symmetric

functions λk and the sums of powers ψk are defined by

λk(t) =
∑

n1>...>nk>0

tn1
. . . tnk

and ψk(t) =
∑
n>0

tkn. (11)

They are respectively coefficients of the following generating functions

λ(t|z) =
∑
k>0

λk(t)z
k =

∏
i≥1

(1 + tiz) and (12)

ψ(t|z) =
∑
k>0

ψk(t)z
k−1 =

∑
i≥1

ti
1− tiz

.

These generating functions satisfy a Newton identity

d/dz log λ(t|z) = ψ(t| − z). (13)
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The fundamental theorem from symmetric functions theory asserts
that the {λk}k≥0 are linearly independent, and remarkable identities give
(putting λ0 = 1) :

k!λk = (−1)k
∑

s1,...,sk>0
s1+...+ksk=k

(
k

s1, . . . , sk

)(
−ψ1

1

)s1

. . .

(
−ψk

k

)sk

(14)

Let w = ys1
. . . ysr

∈ Y ∗. The quasi-symmetric function Fw, of depth
r = |w| and of degree (or weight) s1 + . . .+ sr, is defined by

Fw(t) =
∑

n1>...>nr>0

ts1
n1
. . . tsr

nr
. (15)

In particular, Fyk
1

= λk and Fyk
= ψk. As a consequence, the functions

{Fyk
1
}k≥0 are linearly independent and integrating differential equation (13)

shows that functions Fyk
1

and Fyk
are linked by the formula

∑
k≥0

Fyk
1
zk = exp

[
−

∑
k≥1

Fyk

(−z)k

k

]
. (16)

Remarkable identity (14) can be then seen as :

k!yk
1 = (−1)k

∑
s1,...,sk>0

s1+...+ksk=k

(
k

s1, . . . , sk

)
(−y1)

s1

1s1
. . .

(−yk)
sk

ksk
(17)

Every Hw(N) can be obtained by specializing variables {ti}N≥i≥1 at ti =
1/i and, for i > N, ti = 0 in the quasi-symmetric function Fw [5]. In
the same way, when w ∈ Y ∗ \ y1Y

∗, the convergent polyzêta ζ(w) can
be obtained by specializing variables {ti}i≥1 at ti = 1/i in Fw [5]. The
notation Fw is extended by linearity to all polynomials over Y .

If u (resp. v) is a word in Y ∗, of length r and of weight p (resp. of length
s and of weight q), Fu v is a quasi-symmetric function of depth r+ s and
of weight p+ q, and we have Fu v = Fu Fv.
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In consequence, Hu v = Hu Hv [5]. In the same way, when u, v ∈ Y ∗\y1Y
∗,

we also have ζ(u v) = ζ(u) ζ(v) [5].
Let us consider the noncommutative generating series H(N) of

{Hw(N)}w∈Y ∗ [14],

H(N) =
∑
w∈Y ∗

Hw(N) w =
l=N∏

1

(
1 +

∑
i>0

yi

li

)
. (18)

since it verifies the difference equation

H(N) =

(
1 +

∑
i>0

yi

N i

)
H(N − 1), with H(0) = 1. (19)

2.1.2 Polylogarithms and polyzêtas

Let us denote by C the algebra C[z, 1/z, 1/(1− z)] of polynomial functions
in z, 1/z and 1/(1− z). We define two differential forms ω0(z) = dz/z and
ω1(z) = dz/(1− z).

Let w = xs1−1
0 x1 . . . x

sr−1
0 x1 ∈ X∗x1. One can check that the polyloga-

rithm Liw is also the value of the iterated integral over ω0, ω1 and along
the integration path 0 z :

Liw =

∫
0 z

ωs1−1
0 ω1 . . . ω

sr−1
0 ω1. (20)

This provides an analytic continuation of the Liw over the universal cov-

ering ˜C− {0, 1} of C without points 0 and 1. We extend the definition of
polylogarithms over X∗ putting

Lixk
0
(z) = logk z/k!, for k ∈ N. (21)

Let LIC = (C{Liw}w∈X∗, .) be the smallest C-algebra containing C and
stable by differentiation and integration over ω0, ω1. It can be identified
with the C-module generated by polylogarithms. Thus, the polylogarithms
are C-linearly independent [6]. Hence, (C{Liw}w∈X∗, .) is identified with the
polynomial algebra (C{Pl}l∈LynX , .) [6].
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The noncommutative generating series L(z) =
∑

w∈X∗ Liw(z) w satisfies
Drinfel’d differential equation [7, 8]

dL = (x0ω0 + x1ω1)L, with the condition (22)

L(ε) = ex0 log ε +O(
√
ε) for ε→ 0+.

This enables to prove that L is the exponential of a Lie series [6]. So,
applying a Ree theorem, it verifies Friedrichs criterion [6], i..e Liu tt v =
Liu Liv for u, v ∈ X∗. In particular, when u, v ∈ x0X

∗x1, we also have
ζ(u tt v) = ζ(u) ζ(v). From the factorization of monoid by Lyndon words,
we obtain the factorization of the series L [6] :

L(z) = ex1 log 1
1−z

[ ↘∏
l∈LynX\{x0,x1}

eLiSl
(z)[l]

]
ex0 log z. (23)

For all l ∈ LynX \ {x0, x1}, we have Sl ∈ x0X
∗x1. So, let us put [6]

Lreg =

↘∏
l∈LynX\{x0,x1}

eLiSl
[l] and Z = Lreg(1). (24)

Let σ be the monoid endomorphism verifying σ(x0) = −x1, σ(x1) = −x0,
we also get [9]

L(z) = σ[L(1− z)]Z = ex0 log zσ[Lreg(1− z)]e−x1 log(1−z)Z. (25)

In consequence, from (23) and (25), we get respectively

L(z)
z̃→0 exp(x0 log z) and L(z)

z̃→1 exp

(
x1 log

1

1− z

)
Z. (26)

Let πY : LIC〈〈X〉〉 → LIC〈〈Y 〉〉 a projector s.t., for f ∈ LIC, w ∈
X∗, πY (f wx0) = 0. Then

Λ(z) = πY L(z)
z̃→1 exp

(
y1 log

1

1− z

)
πYZ. (27)
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Definition 1 ([1]). Let ζtt : (C〈〈X〉〉, tt) → (C, .) be the algebra morphism
(i.e. for u, v ∈ X∗, ζtt(u tt v) = ζtt(u)ζtt(v)) verifying for all convergent
word w ∈ x0X

∗x1, ζtt(w) = ζ(w), and such that ζtt(x0) = ζtt(x1) = 0.

Then, the noncommutative generating series Ztt =
∑

w∈X∗ ζtt(w) w

verifies Ztt = Z [1]. In consequence, Ztt is the unique Lie exponential
verifying 〈Ztt |x0〉 = 〈Ztt |x1〉 = 0 and 〈Ztt |w〉 = ζ(w), for any w ∈ x0X

∗x1.
Its logarithm is given by logZtt =

∑
w∈X∗ ζtt(w) π1(w), where π1(w) is the

Lie polynomial [3]

π1(w) =
∑
k≥1

(−1)k−1

k

∑
u1,··· ,uk∈X∗\{ε}

〈w|u1 tt · · · tt uk〉 u1 · · ·uk. (28)

The series Z shall be understood then as Drinfel’d associator ΦKZ [7, 8]
verifying duality, pentagonal and hexagonal relations. We also can obtain
the expression of this associator given by Lê and Murakami [11] thanks to
the following expansion [10]

Z =
∑
k≥0

∑
l1,··· ,lk≥0

ζtt(x1x
l1
0 ◦ · · · ◦ x1x

lk
0 )

k∏
i=1

adli
x0
x1, (29)

where adl
x0
x1 stands for the iterated Lie bracket [x0, [. . . , [x0, x1] . . .], for l >

0 and ad0
x0
x1 = x1, the operation ◦ being defined as x1x

l
0 ◦P = x1(x

l
0 tt P ),

for any P ∈ C〈X〉.

2.1.3 Ordinary generating series of harmonic sums

The functions {Liw}w∈X∗ are C-linearly independent. Thus, the func-
tions {Pw}w∈Y ∗ are also C-linearly independent. In consequence, functions
{Hw}w∈Y ∗ are also C-linearly independent [13, 12]. So,

Proposition 1 ([14]). Extended by linearity, the application P : u 7→ Pu is
an isomorphism from polynomial algebra (C〈Y 〉, ) over Hadamard alge-
bra (C{Pw}w∈Y ∗,�). Moreover, the application H : u 7→ Hu = {Hu(N)}N≥0

is an isomorphism from (C〈Y 〉, ) over the algebra (C{Hw}w∈Y ∗, .).
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Proof : Indeed, on the first hand, ker P = {0} and ker H = {0}, and on
the other hand, P is a morphism for Hadamard product (it inherits of H
for the harmonic product) :

Pu(z)� Pv(z) =
∑
N≥0

Hu(N)Hv(N)zN

=
∑
N≥0

Hu v(N)zN

= Pu v(z).

Studying the equivalence between action of {(1 − z)l}l∈Z over
{Pw(z)}w∈Y ∗ and this of {Nk}k∈Z over {Hw(N)}w∈Y ∗ [12], we have

Theorem 1. The Hadamard C-algebra of {Pw}w∈Y ∗ can be identified with
this of {Pl}l∈LynY . Identically, the algebra of harmonic sums {Hw}w∈Y ∗

with polynomial coefficients can be identified with this of {Hl}l∈LynY .

As for polylogarithms, we extend the definition of Pw putting Pw(z) =
(1− z)−1Liw(z), for any w ∈ X∗. The noncommutative generating series
of {Pw}w∈X∗ is defined by

P(z) =
∑

w∈X∗

Pw(z) w =
L(z)

1− z
. (30)

In consequence, by (23), we have

P(z) = e−(x1+1) log(1−z)Lreg(z)e
x0 log z. (31)

Lemma 1. Let Mono(z) = e−(x1+1) log(1−z). Then

Mono =
∑
k≥0

Pyk
1
yk

1 , and Mono−1 =
∑
k≥0

Pyk
1

(−y1)
k.

Since the coefficient of zN in the Taylor expansion of Pyk
1

is Hyk
1
(N) then

Lemma 2. Let Const =
∑

k≥0 Hyk
1
yk

1 . Then

Const = exp

[
−

∑
k≥1

Hyk

(−y1)
k

k

]
and Const−1 = exp

[∑
k≥1

Hyk

(−y1)
k

k

]
.
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Proof : This is a consequence of Formula (16).

Proposition 2. For k > 0,Hyk
1

is polynomial in {Hyr
}1≤r≤k (which are

algebraically independent), and

Hyk
1

=
∑

s1,...,sk>0
s1+...+ksk=k

(−1)k

s1! . . . sk!

(
−Hy1

1

)s1

. . .

(
−Hyk

k

)sk

.

Proof : From Identity (17), and applying the isomorphism H on the set
of Lyndon words {yr}1≤r≤k, we get the expected result.

Example 1. Hy2
1
= (H2

y1
− Hy2

)/2, Hy3
1
= (H3

y1
− 3Hy2

Hy1
+ 2Hy3

)/6.

Proposition 3 ([14]). Let σ be the morphism verifying σ(x0) =
−x1, σ(x1) = −x0.

P(z) = ex0 log z

[ ↘∏
l∈LynX,\{x0,x1}

eLiSl
(1−z)σ([l])

]
Mono(z)Z,

Proof : On the first hand, from (31) and on the other hand, from (25),

we get P(z) = ex0 log zσ[Lreg(1 − z)]e−(x1+1) log(1−z)Z. Using the expressions
of Lreg(1− z) and of Mono(z), we get the expected results.

2.2 Asymptotic expansion

2.2.1 Results à l’Abel for generating series

Proposition 4. P(z)
z̃→0 e

x0 log z and P(z)
z̃→1 Mono(z)Z.

Proof : From P(z) = e−(x1+1) log(1−z)Lreg(z)e
x0 log z, we can deduce the

behaviour of P(z) around 0. From Formula (25), we get the behaviour of
P(z) around 1.

Corollary 1. Let Π(z) = πY P(z) =
∑

w∈Y ∗ Pw(z) w. Then
Π(z)

z̃→1 Mono(z)πYZ.
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From this, we extract, taking care of Lemma 1, Taylor coefficients of Pw,
and we get

Corollary 2. H(N)
Ñ→∞ Const(N)πYZ.

Theorem 2.

lim
z→1

exp

(
y1 log

1

1− z

)
Λ(z) = lim

N→∞
exp

(∑
k≥1

Hyk
(N)

(−y1)
k

k

)
H(N) = πYZ.

Proof : This is a consequence of Formula (27), of Lemma 2 and of Corol-
lary 2.

From Proposition 3, we deduce

P(z) = ex0 log z

[ ↘∏
l∈LynX,
l 6=x0,x1

z

(∑
k≥0

P
S
tt k

l

(1− z)
(σ([l]))k

k!

)]
Mono(z)Z. (32)

Hence, the knowledge of Taylor expansion around 0 of {Pw(1 − z)}w∈X∗

gives

Theorem 3 ([12]). For all g ∈ C{Pw}w∈Y ∗, there exist algorithmically
computable coefficients cj ∈ C, αj ∈ Z and βj ∈ N such that

g(z) ∼
+∞∑
j=0

cj(1− z)αj logβj(1− z) for z → 1.

In consequence, there exist algorithmically computable coefficients bi ∈ C,
ηi ∈ Z and κi ∈ N such that

[zn]g(z) ∼
+∞∑
i=0

bin
ηi logκi(n) for n→∞.

Corollary 3 ([12]). Let Z the Q-algebra generated by convergent polyzêtas
and Z ′ the Q[γ]-algebra generated by Z. Then there exist algorithmically
computable coefficients cj ∈ Z, αj ∈ Z and βj ∈ N such that

∀w ∈ Y ∗,Pw(z) ∼
+∞∑
j=0

cj(1− z)αj logβj(1− z) for z → 1.

11
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In consequence, there exist algorithmically computable coefficients bi ∈
Z ′, κi ∈ N and ηi ∈ Z such that

∀w ∈ Y ∗,Hw(N) ∼
+∞∑
i=0

biN
ηi logκi(N) for N → +∞.

2.2.2 Generalized Euler constants associated to divergent polyzêtas

Definition 2. Let ζ : (C〈Y 〉, ) → (C, .) the algebra morphism (i.e.
for all convergent word u, v ∈ Y ∗, ζ (u v) = ζ (u)ζ (v)) verifying for
w ∈ Y ∗ \ y1Y

∗, ζ (w) = ζ(w) and such that ζ (y1) = γ.

Proposition 5.

ζ (yk
1) =

∑
s1,...,sk>0

s1+...+ksk=k

(−1)k

s1! . . . sk!
(−γ)s1

(
−ζ(2)

2

)s2

. . .

(
−ζ(k)

k

)sk

.

Proof : By (17) and applying the (surjective) morphism ζ , we get the
expected result.

In consequence,

Theorem 4. For k > 0, the constant ζ (yk
1) associated to diver-

gent polyzêta ζ(yk
1) is a polynomial of degree k in γ with coefficients in

Q[ζ(2), ζ(2i + 1)]0<i≤(k−1)/2. Moreover, for l = 0, .., k, the coefficient of γl

is of weight k − l.

Example 2. ζ (y2
1) = [γ2− ζ(2)]/2, ζ (y3

1) = [γ3−3ζ(2)γ+2ζ(3)]/6 and
ζ (y4

1) = [80ζ(3)γ − 60ζ(2)γ2 + 6ζ(2)2 + 10γ4]/240.

Let us consider (exponential) partial Bell polynomials partiels in the
variables {tl}l≥1, bn,k(t1, . . . , tn−k+1), defined by the exponential generating
series :

∞∑
n=0

n∑
k=0

bn,k(t1, . . . , tn−k+1)
vnuk

n!
= exp

(
u

∞∑
l=1

tl
vl

l!

)
. (33)

12
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In particular, we have

Lemma 3. Let tm = (−1)m(m− 1)!ζ (m), for m ≥ 1, then

exp

[∑
k≥1

ζ (k)
(−y1)

k

k

]
= 1 +

∑
n≥1

[ n∑
k=1

bn,k(γ, ζ(2), 2ζ(3), . . .)

]
(−y1)

n

n!
.

Let us build the noncommutative generating series of ζ (w) and let us
take the constant part of the two members of H(N)

Ñ→∞ Const(N)πYZ,
we have

Proposition 6. Let Z be the noncommutative generating series of the
constants ζ (w), i.e. Z =

∑
w∈Y ∗ ζ (w) w. Then

Z =

[
1 +

∑
n≥1

( n∑
k=1

bn,k(γ, ζ(2), 2ζ(3), . . .)

)
(−y1)

n

n!

]
πYZ.

Identifying coefficients of yk
1w in each member leads to

Corollary 4. For all w ∈ Y ∗ \ y1Y
∗ and k ≥ 0, we have

ζ (yk
1w) =

k∑
i=1

ζ (yk−i
1 w)

i!

[
(−1)i

i∑
j=1

bi,j(γ, ζ(2), 2ζ(3), . . .)

]
.

Theorem 5. In consequence, for w ∈ Y ∗ \ y1Y
∗, k ≥ 0, the constant

ζ (yk
1w) associated to ζ(yk

1w) is a polynomial of de degree k in γ and with
coefficients in Z. Moreover, for l = 0, .., k, the coefficient of γl is of weight
|w|+ k − l.

Corollary 5. For s > 1, the constant ζ (1, s) associated to ζ(1, s) is linear
in γ and with coefficients in Q[ζ(2), ζ(2i+ 1)]0<i≤(s−1)/2.

Example 3. γ =
ζ (1, 2) + 2ζ(3)

ζ(2)
=

ζ (1, 3) + 1
2ζ(2)2

ζ(3)
=

ζ (1, 4) + 3ζ(5)− ζ(2)ζ(3)
2
5ζ(2)2

.

13
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In other words, if we give to γ the weight2 1, then the constant ζ (yk
1w)

associated to ζ(yk
1w) would be an homogeneous polynomial of weight |w|+

k.

Example 4.

ζ (1, 7) = ζ(7)γ + ζ(3)ζ(5)− 54
175ζ(2)4,

ζ (1, 1, 6) = 4
35ζ(2)3γ2 +

(
ζ(2)ζ(5) + 2

5ζ(3)ζ(2)2 − 4ζ(7)

)
γ

+ζ(6, 2) + 19
35ζ(2)4 + 1

2ζ(2)ζ(3)2 − 4ζ(3)ζ(5),

ζ (1, 1, 1, 5) = 3
4ζ(6, 2)− 14

3 ζ(3)ζ(5) + 3
4ζ(2)ζ(3)2 + 809

1400ζ(2)4

−
(

2ζ(7)− 3
2ζ(2)ζ(5) + 1

10ζ(3)ζ(2)2
)
γ

+

(
1
4ζ(3)2 − 1

5ζ(2)3
)
γ2 + 1

6ζ(5)γ3.

2.2.3 Commutative generating series of polyzêtas

In Proposition 6, we explained how to extract the constant part of a non-
commutative generating series of polyzêtas. Let us have a look now at
following commutative generating series and corresponding to Ecalle’s Zig-
moulds [15] :

Z(t1, · · · , tr) =
∑

s1,··· ,sr>0

ζ(s1, · · · , sr) t
s1−1
1 · · · tsr−1

r (34)

=
∑

n1>···>nr>0

1

(n1 − t1) · · · (nr − tr)
.

These commutative generating series can be encoded by series {Sj}j=1,..,r

(or their projection over the alphabet Y ) of the form [1]

2 In the theory of periods, γ is conjectured to be non-period and so would be transcendent.
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Sj =(tjx0)
∗x1 . . . (trx0)

∗x1 (35)

=
∑

sj ,...,sr>0

x
sj−1
0 x1 . . . x

sr−1
0 x1t

sj−1
j . . . tsr−1

r ,

πY Sj =
∑

sj ,...,sr>0

ysj
. . . ysr

t
sj−1
j . . . tsr−1

r (36)

=

(∑
sj≥1

ysj
t
sj−1
j

)
. . .

(∑
sr≥1

ysr
tsr−1
r

)
.

Moreover, let Sr+1 = 1. The series Z(t1, · · · , tr) contain divergent terms of
which we are looking for the constant part. We start from the following
identity [1] due to convolution theorem [16]

S1 = xr
1 +

r∑
j=1

tj

j−1∑
i=0

xi
1 tt x0[(−x1)

j−1−i
tt Sj], (37)

⇒ πY S1 = yr
1 +

r∑
j=1

tj

(∑
sj≥2

yj−1
1 ysj

t
sj−1
j

)
πY Sj+1. (38)

Proposition 7. In consequence,

ζtt(S1) =
r∑

j=1

(−1)j−1tj ζ[x0(x
j−1
1 tt Sj)]. (39)

ζ (πY S1) =(−1)r
∑

s1,...,sr>0
s1+...+rsr=r

(−γ)s1

s1! . . . sr!

r∏
j=2

(
−ζ(j)

j

)sj

(40)

+
r∑

j=1

∑
sj≥2

tjt
sj−1
j ζ (yj−1

1 ysj
πY Sj+1).

In the following part, iterated integrals associated with words w ∈ X∗,
along the path 0  z and over differential forms ω0, ω1, will be denoted,
as in [1], by αz

0(w).
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Example 5. Since (tx0)
∗x1 = x1 + tx0(tx0)

∗x1,

αz
0[(tx0)

∗x1] = αz
0(x1) + t

∫ z

0

(
z

s

)t

Li1(s)
ds

s
= αz

0(x1) + t
∑
n≥1

zn

n(n− t)
.

we get

∑
s≥1

ζtt(s)t
s−1 =

∑
s≥2

ζ(s)ts−1 =
∑
n≥1

[
1

n− t
− 1

n

]
,∑

s≥1

ζ (s)ts−1 = γ +
∑
s≥2

ζ(s)ts−1 = γ +
∑
n≥1

[
1

n− t
− 1

n

]
.

Example 6. Identity (37) gives

S =x2
1 + t1 x0(t1x0)

∗x1(t2x0)
∗x1 + t2 x0 (−x1 tt(t2x0)

∗x1) (41)

+ t2 x1 tt x0(t2x0)
∗x1.

In the second member of the previous expression,

• we have ζtt(x
2
1) = 0,

• the first noncommutative rational series encodes, by convolution the-
orem [16], the following convergent integral

α1
0[(t1x0)

∗x0x1(t2x0)
∗x1] =

∫ 1

0

(
1

s

)t1 ds

s

∫ s

0

dr

1− r

∑
n≥1

rn

n− t2

=
∑

n,m≥1

1

(n+m)(n+m− t1)(n− t2)

=
∑

n1>n2≥1

1

n1(n1 − t1)(n2 − t2)
,
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• the following rational series encodes

α1
0[x0 (−x1 tt(t2x0)

∗x1)] = −
∫ 1

0

ds

s

∑
m≥1

sm

m

∑
n≥1

sn

n− t2

= −
∑

n,m≥1

1

(n− t2)(n+m)n

= −
∑

n1>n2≥1

1

n1(n1 − n2)(n2 − t2)
,

• the last noncommutative rational series corresponds to (but it has to
be shuffled with x1 for which ζtt(x1) = 0)

α1
0[x0(t2x0)

∗x1] =

∫ 1

0

ds

s

∑
n≥1

sn

n− t2
=

∑
n≥1

1

n(n− t2)
.

Thus,

∑
s,r≥1

ζtt(s, r)t
s−1
1 tr−1

2 =
∑

n1>n2≥1

t1
n1(n1 − t1)(n2 − t2)

(42)

−
∑

n1>n2≥1

t2
n1(n1 − n2)(n2 − t2)

.

Projecting S over alphabet Y , we get successively, since
y1ys = y1 ys − ys+1 − ysy1

17



GIFT 2006

πY S =y2
1 +

∑
s,r≥2

ysyrt
s−1
1 tr−1

2 +
∑
s≥2

y1yst
s−1
2 +

∑
s≥2

ysy1t
s−1
1

=y2
1 +

∑
s,r≥2

ysyrt
s−1
1 tr−1

2 + y1

∑
s≥2

yst
s−1
2 − 1

t2

[
y1 +

∑
s≥2

yst
s−1
2

]
+

∑
s≥2

ysy1[t
s−1
1 − ts−1

2 ]

=y2
1 − y1t

−1
2 + (y1 − t−1

2 )
∑
s≥2

yst
s−1
2 +

∑
s,r≥2

ysyrt
s−1
1 tr−1

2

+
∑
s≥2

ysy1[t
s−1
1 − ts−1

2 ].

In consequence,∑
s,r≥1

ζ (s, r)ts−1
1 tr−1

2 =
γ2 − ζ(2)

2
− γ

t2
+ (γ − t−1

2 )
∑
n≥1

[
1

n− t2
− 1

n

]
+

∑
n1>n2≥1

[
1

n1 − t1
− 1

n1

][
1

n2 − t2
− 1

n2

]
+

∑
s≥2

ζ(s, 1)[ts−1
1 − ts−1

2 ].

The last sum can be encoded by x0(t1x0)
∗x2

1 − x0(t2x0)
∗x2

1 and can be ob-
tained from

α1
0[x0(tix0)

∗x2
1] =

∫ 1

0

ds

s

∑
n1>n2≥1

sn1

(n1 − ti)n2
=

∑
n1>n2≥1

1

n1(n1 − ti)n2
.

Appendix : application to polysystems [14]

Let q1, . . . , qn be commutative indeterminates over C. We denote Q =
{q1, . . . , qn}. The algebra of formal power series (resp. polynomials) over
Q with coefficients in C is denoted by C[[Q]] (resp. C[Q]). An element of
C[[Q]] is an infinite sum f =

∑
i1,...,in≥0 fi1,...,inq

i1
1 . . . q

in
n .
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Definition 3. Let f ∈ C[[Q]]. We set

E(f) = {ρ ∈ Rn
+ : ∃Cfρ ∈ R+ such that for all i1, . . . , in ≥ 0,

|fi1,...,in|ρ
i1
1 . . . ρ

in
n ≤ Cfρ}

Ě(f) : interior of E(f) in Rn.

CV(f) = convergence domain of f = {q ∈ Cn : (|q1|, . . . , |qn|) ∈ Ě(f)}.

The power series f is to be said convergent if CV(f) 6= ∅. Let U be an
open of Cn and let q ∈ Cn. The power series f is to be said convergent on
q (resp. over U) if q ∈ CV(f) (resp. U ⊂ CV(f)). We set Ccv[[Q]] = {f ∈
C[[Q]] : CV(f) 6= ∅}. Let q ∈ CV(f). There exist some constants Cfρ, ρ

and ρ̌ such that |q1| < ρ̌ < ρ, . . . , |qn| < ρ̌ < ρ and |fi1,...,in|ρi1+...+in ≤ Cfρ,
for i1 . . . , in ≥ 0. The convergence module of f at q is (Cfρ, ρ, ρ̌).

Recall Dj1
1 . . . D

jn
n f is the partial derivation of order j1, . . . , jn ≥ 0 of f

and is given by

Dj1
1 . . . D

jn
n f

j1! . . . jn!
=

∑
i1≥j1,...,in≥jn

fi1,...,in

n∏
l=1

(
il
jl

)
qil−jl
n .

Definition 4. The polysystem {Ai}i=0,..,m is defined by the Lie deriva-
tions Ai =

∑n
j=1A

j
iDj, where Aj

i ∈ Ccv[[Q]]. It is linear if there exist
{Mi}i=0,..,m ∈Mn,n(C) s.t.

Ai =
(
q1 . . . qn

)
Mi

D1
...
Dn

 .

Let f ∈ Ccv[[Q]] and let {Ai}i=0,1 be a polysystem. Let (ρ, ρ̌, Cf) and
let (ρ, ρ̌, Ci), for i = 0, 1, be convergence modules of f and {Aj

i}j=1,..,n

respectively at q ∈ CV(f) ei=0,1,j=1,..,n CV(Aj
i ). We denote by (Aif)|q the

evaluation at q of Aif . Let us consider the system

y(z) = f(q(z)), where dq(z) = A0(q)ω0(z) + A1(q)ω1(z). (43)
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Let us consider then the following generating series, σf|q(z0)
and the Chen

series Sz0 z

σf|q(z0)
=

∑
w∈X∗

Awf|q(z0)
w and Sz0 z =

∑
w∈X∗

αz
z0

(w)w, (44)

where Aw = Id, αz
z0

(w) = 1 if w = ε and Aw = AvAi, α
z
z0

(w) =∫
z0 z α

t
z0

(v)ωi(t) if w = vxi.

Since Sz0 z and L(z)L(z0)
−1 satisfy (22) taking the same value at z0 then

Sz0 z = L(z)L(z0)
−1. Hence, the asymptotic behaviour of L in (22) gives

[6]

Sε 1−ε ∼ e−x1 log εZe−x0 log ε for ε→ 0+, (45)

and the output y of (43) is given by y(z) = 〈σf|q(z0)
||Sz0 z〉 =∑

w∈X∗ Awf|q(z0)
αz

z0
(w) [14].

Let η = q(z0) and suppose that f(q) = λq with λ ∈M1,n(C). If {Ai}i=0,1

is linear, then, by Definition 4, let Mi = µ(xi), for i = 0, 1. Thus, σf|q(z0)
=∑

w∈X∗[λµ(w)η]w is a rational power series of representation (λ, µ, η) and
it is a generating series of the differential system of rank n, or equivalently
of the linear differential equation of order n with singularities in {0, 1,∞}.
Example 7 (hypergeometric equation).

z(1− z)ÿ(z) + [t2 − (t0 + t1 + 1)z]ẏ(z)− t0t1y(z) = 0.

Let q1(z) = y(z) and q2(z) = z(1− z)ẏ(z). One has(
dq1
dq2

)
=

[(
0 0

−t0t1 −t2

)
ω0 −

(
0 1
0 t2 − t0 − t1

)
ω1

](
q1
q2

)
.

Here y =
(
1 0

) (
q1
q2

)
, M0 = −

(
0 0
t0t1 t2

)
,M1 =

(
0 1
0 t2 − t0 − t1

)
and

η =

(
q1(z0)
q2(z0)

)
.

Thus, the solution of these equations can be obtained by examining the
linear representation of generating series. The Drinfel’d equation allows to
study the asymptotic behaviour, the functional equations and to compute
the mondromy groups, the Galois differential groups.
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