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Epreuve de Méthodes quantitatives en économie.

Mardi 22 Mai 2007, de 13h30 à 16h30
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Questions de cours.(5 points) Soit f et g deux fonctions en deux variables réelles x et y à valeurs réelles :

f : R2 −→ R, (1)
(x, y) 7→ f(x, y). (2)

g : R2 −→ R, (3)
(x, y) 7−→ g(x, y). (4)

On suppose que les dérivées partielles de jusqu’au seconde ordre de f et de g existent et sont continues dans
un domaine D.

1. Soit z une troisième variable rélle. Construire le Lagrangien F associé au problème de recherche
d’extremum max f(x, y) sous la contrainte g(x, y) = 0 avec le multiplicateur de Lagrange z. Sous la
contrainte g(x, y) = 0, quand est-ce-que f(x, y), admet un extremum la en un point (x0, y0) ?

2. Donner le Hessien ∇F (x, y, z) de F . Rappelons que F est une fonction en trois variables réelles x, y
et z à valeurs réelles :

F : R3 −→ R, (5)
(x, y, z) 7−→ F (x, y, z). (6)

Soient x1, y1, z1 tels que 
∂F
∂x (x1, y1, z1)
∂F
∂y (x1, y1, z1)
∂F
∂z (x1, y1, z1)

 =

0

0

0

 . (7)

Suivant que ∇F (x1, y1, z1) < 0 ou ∇F (x1, y1, z1) = 0 ou ∇F (x1, y1, z1) > 0, donner la nature de
l’extremum f(x1, y1).

Problème 1 (10 points) On considère un produit P , et l’on suppose que la quantité demandée y soit une
fonction du prix de la forme

y = f(x) =
ax + b

cx + 1
.

1. Déterminer les réels a, b, c, pour que les quantités demandées pour les prix 1, 2 et 5 unités de prix
soient respectivement 15, 8 et 1.
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2. Vérifier qu’alors

f(x) = −6 +
42

x + 1
.

3. Dériver la fonction f .

4. Etudier la fonction f sur R+.

5. Tracer le graphique de la fonction f sur R+.

6. Dans quel intervalle peut varier x ?

7. Tracer le graphique de la fonction d’offre g est définie par

g : R+ −→ R,

x 7−→ y = g(x) =
1
2
x2 + 3x.

8. Déterminer graphiquement le prix x et la quantité y lorsque f(x) = g(x) (ce point correspond à
l’équilibre de l’offre et de la demande).

9. Calculer l’intégrale

I =
∫ 2

0

[f(x)− g(x)]dx.

10. Donner une interprétation graphique de I.

Problème 2 (5 points) Considérons une courbe d’indifférence de consommation de deux produits de con-
sommation X et Y d’un pays producteur

f : R2
+ −→ R, (8)

(x, y) 7−→ f(x, y) = xy. (9)

où x et y sont respectivement les quantités de production des produits X et Y de ce pays producteur dont
la courbe des possibilités de production, sur le marché national, est donnée par

x2 + 80y ≤ 1600. (10)

Pour déterminer une politique de production en absence de commerce international, on vous demande
maximixez f(x, y) sous la contrainte g(x, y) = 0, où g est une fonction en deux variables réelles positives x
et y à valeurs réelles positives :

g : R2
+ −→ R+, (11)

(x, y) 7−→ g(x, y) = x2 + 80y − 1600. (12)

1. Donnez le Lagrangien F relatif à f, g.

2. Donner le Hessien ∇F de F .

3. Soient x0, y0, z0 tels que 
∂F
∂x (x0, y0, z0)
∂F
∂y (x0, y0, z0)
∂F
∂z (x0, y0, z0)

 =

0

0

0

 . (13)

Montrez alors que z0 vérifie une équation au second degré

z2
0 =

1
12

. (14)

4. En choisissant une solution positive de l’équation (14), montrez que

x0 =
40√

3
et y0 =

40
3

. (15)

5. Calculer f(x0, y0). Déterminer la nature de ce point.
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