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CONTROLE DU 09 MAI 2007

Exercice 1

1)%:2xy—2yet%:x2—2x+3y2—4y+1.

Vérifions que (1,0) est un point critique pour f
=0
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Verifions que (1, %) est un point critique pour f
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2)Pour déterminer la nature du point critique, on calcule les dérivées partielles d’ordre 2
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Le Hessien en (1, 3) vaut donc
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comme de plus 5-7

3) En ce point, la fonction vaut f(1,3) = —32 ~

L, 3) =% >0, f admet un minimum en (1,

—-1.19

Optimisation sous contrainte

)3r+3y—3=03r=-3y+3er=—y+1

2) Sous cette contrainte, la fonction devient :

9(y) = f(=y+1,y)

3) ¢'(y) = 6y? — 4y = y(6y — 4).
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Lorsque y = 0, on a « = 1, et lorsque y = 2

1

onazr=g,

les extrema de la fonction f sous la

contrainte apparaissent dans le tableau de variations (0 et —2%).

Exercice 2

1)% =2r+3yet g—z =

2z + 3y =0
3xr+2y—4 =0,

3z 42y —4, donc pour trouver le point critique, il faut résoudre le systéme:
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systéme qu’on résout par combinaison ou bien par substitution, et qui a pour solution x = 2.4
et y =—1.6.
2)
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@_2 6y8:c:3 83:6y: dy?

Le Hessien en (2.4, —1.6) vaut donc
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donc le point critique ne correspond ni & un maximum, ni & un minimum (point-col).



